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Preface

Understanding mathematics cannot be
transmitted by painless entertainment

. . . actual contact with the content of
living mathematics is necessary.

The present book . . . is not a concession
to the dangerous tendency toward

dodging all exertion.
Richard Courant (1888–1972) and Herbert Robbins (1915–2001)

Preface to the first edition of What is mathematics?

Interested students of mathematics, who seek insight into the “essence of
the discipline”, and who read more widely with a view to discovering what
the subject is really about, may emerge with the justifiable impression of
serious mathematics as an austere, but distant mountain range – accessible
only to those who devote their lives to its exploration. And they may
conclude that the beginner can only appreciate its rough outline through
a haze of unbridgeable distance. The best popularisers sometimes manage
to convey more than this – including hints of the human story behind
recent developments, and the way different branches and results interact
in unexpected ways; but the essence of mathematics still tends to remain
elusive, and the picture they paint is inevitably a broad brush substitute for
the detail of living mathematics.

This collection takes a different approach. We start out by observing
that mathematics is not a fixed entity – as one might unconsciously infer
from the metaphor of an “austere mountain range”. Mathematics is a
mental universe, a work-in-progress in our collective imagination, which
grows dramatically over time, and whose eventual extent would seem to be
unconstrained – without any obvious limits. This boundlessness also works
in reverse, when applied to small details: features which we thought we had
understood are repeatedly filled in, or reinterpreted, in new ways to reveal
finer and finer micro-structures.

Hence whatever the essence of the discipline may be, it is clearly not
something which can only be accessed through the complete exploration
of some fixed corpus of knowledge. Rather the essential character of
mathematics seems to be related to
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• the kind of material that counts as mathematical,

• the way this material is addressed,

• the changes in perspective that occur as our understanding grows and
deepens, and

• the unexpected connections that regularly emerge between separate
strands and layers.

There are a number of books giving excellent general advice to prospective
students about how university mathematics differs from school mathematics.
In contrast, this collection – which we hope will be enjoyed by interested high
school students and their teachers, by undergraduates and postgraduates,
and by many others – is more like a messy workshop than a polished
exposition. Here the reader is asked to tackle a sequence of problems, to
reflect on what they discover, and mostly to draw their own conclusions
(though some key messages are explicitly discussed in the text, or in the
solutions at the end of each chapter). This attempt to engage the reader as
an active participant along the way is inevitably untidy – and may sometimes
prove frustrating. In particular, whereas a polished exposition would break
up the text with eye-catching diagrams, an untidy workshop will usually
leave the reader to draw their own figures as an essential part of the struggle.
This temporary untidiness and frustration is an integral part of “the essence”
that we seek to capture – provided it leads to occasional glimpses of the
power, and the elegance of mathematics.

Young children and students of all ages regularly experience the power, the
economy, the beauty, and the elegance of mathematics and of mathematical
thinking on a small scale, through struggling with certain elementary results
and problems (or groups of problems). For example, one of the problems we
have included in Chapter 3 was mentioned explicitly in an interview1 with
the leading Russian mathematician Vladimir Arnold (1937–2010):

Interviewer: Please tell us a little bit about your early education.
Were you already interested in mathematics as a child?

Arnold: [. . . ] The first real mathematical experience I had
was when our schoolteacher I.V. Morotzkin gave us the following
problem [VA then formulated Problem 89 in Chapter 3].

I spent a whole day thinking on this oldie, and the solution (based
on what are now called scaling arguments, dimensional analysis, or
toric variety theory, depending on your taste) came as a revelation.

1 Notices of the AMS, vol 44, no. 4.
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The feeling of discovery that I had then (1949 ) was exactly the
same as in all the subsequent much more serious problems – be
it the discovery of the relation between algebraic geometry of real
plane curves and four-dimensional topology (1970 ), or between
singularities of caustics and of wave fronts and simple Lie algebras
and Coxeter groups (1972 ). It is the greed to experience such a
wonderful feeling more and more times that was, and still is, my
main motivation in mathematics.

This suggests that school mathematics need not be seen solely as an extended
apprenticeship, which is somehow different from the craft of mathematics
itself. Maybe some aspects of elementary mathematics can be experienced
as if they were a part of mathematics proper, in which case suitably
chosen elementary material, addressed in the appropriate spirit, might serve
as a microcosm, or mini-universe, in which many features of the larger
mathematical cosmos can be directly, and faithfully experienced by a relative
novice (at least to some extent).

This collection of problems (and solutions) is an attempt to embody this idea
in a form that might offer students, teachers, and interested readers a glimpse
of “the essence of mathematics” – where this insight is experienced, not
vicariously through the authors’ elegant prose, or broad-brush descriptions,
but through the reader’s own engagement with carefully chosen,
accessible problems from elementary mathematics.

Our understanding of the human body and how it works owes much to those
(such as the ancient Greeks from 500 BC to Galen in the 2nd century AD,
and much later Vesalius in the 16th century AD), who went beyond merely
writing about such things in high-sounding prose, and who got their hands
dirty by procuring cadavers, and cutting them up in order to see things from
the inside – while asking themselves all the time how the different parts
of the body were connected, and what function they served. In a similar
way, the European discovery of the New World in the 15th century, and the
confirmation that the Earth can be circumnavigated, depended on those who
dared to set sail into uncharted waters and to keep a careful record of what
they found.

The process of trying to understand things from the inside is not a
deterministic procedure: it depends on a mixture of experience and
inspiration, intelligence and inference, error and self-criticism. At any
given time, the prevailing view may be incomplete, or misguided. But
the underlying approach (of checking current ideas against the reality they
purport to describe) is the only way we human beings know that allows us
to gradually overcome errors and to gain fresh insight.

Our goal in this book is universal (namely to illustrate the idea that a
suitably selected elementary microcosm can capture something of the essence
of mathematics): hence the problems have all been chosen because we believe
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they convey something universal in a relatively elementary setting. But the
particular set of problems chosen to illustrate the central goal is personal.
So we encourage the reader to engage with these problems and results in the
same way that old anatomists engaged with cadavers, or old explorers set out
on voyages of discovery – getting their hands dirty while asking questions,
such as:

How do the things we see relate to what we know?
What does this tell us about the subject of mathematics that we
want to understand better?

In recent years schools and teachers in many countries have been under
increasing political pressure to concentrate on measurable, short term
“improvements”. Such pressures have often been linked to central testing,
with negative consequences for low scores. This has encouraged teachers to
play safe, and to focus on backward-looking methods that allow students to
produce answers to predictable one-step problems. The effect has been to
downgrade the more important challenges which every student should face:
namely

• of developing a robust mastery of new, forward-looking techniques (such
as fractions, proportion, and algebra), and

• of integrating the single steps students have at their disposal into larger,
systematic schemes, so that they can begin to tackle and solve simple
multi-step problems.

Focusing on short-term goals is incompatible with good mathematics
teaching. Learning mathematics is a long game; and teachers and students
need the freedom to digress, to look ahead, and to build slowly over
time. Teachers at each stage must be free to recognise that their primary
responsibility is not just to improve their students’ performance on the next
test, but to establish a firm platform on which subsequent stages can build.

The pressures referred to above will be recognised in many countries,
where well-intentioned, but ill-considered, centrally imposed accountability
mechanisms have given rise to short-sighted “reforms”. A didactical
and pedagogical framework that is consistent with the essence, and the
educational value of elementary mathematics cannot be rooted in false
alternatives to mathematics (such as numeracy, or mathematical literacy).
Nor can it be based on tests measuring cheap success on questions that
require only one-step routines. We need a framework that encourages a rich
combination of childlike curiosity, persistence, fruitful frustration, and the
solid satisfaction of structural sense-making.

A problem sequence such as ours should ideally be distilled and refined over
decades. However, the best is sometimes the enemy of the good:
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Striving to better,
Oft we mar what’s well.
(William Shakespeare, King Lear)

Hence, as a mild contribution to this process of rediscovering the essence of
elementary mathematics, we risk this collection in its present form. And we
encourage interested readers to take up pencil and paper, and to join us on
this voyage of discovery through elementary mathematics.

Those who enjoy watching professional football (i.e. soccer) must sometimes
marvel at the way experienced players seem to be instinctively aware of the
movements of other players, and manage to feed the ball into gaps and spaces
that we mere spectators never even noticed were there. What we overlook
is that the best players practise the art of constantly looking around them,
and updating their mental record – “viewing the field of play, with their
heads up” – so that when the ball arrives and their eyes have to focus on the
ball, their ever-changing mental record keeps updating itself to tell them
(sometimes apparently miraculously) where the best tactical options lie.
Implementing those tactical options depends in part on endless practice of
skills; but practice is only one part of the story. What we encourage readers
to develop here is the mathematical equivalent of this habit of “viewing the
field of play, with one’s head up”, so that what is noticed can continue to
guide the choice of tactical options when one is subsequently immersed in
the thick of calculation.

Ours is a unique discipline, which is so much richer than the predictable
routines that dominate many contemporary classrooms and assessments. We
hope that all readers will find that the experience of struggling with, and
savouring, this little collection reveals the occasional fresh and memorable
insight into “the essence of mathematics”.

We should not worry if students don’t know everything,
but only if they know everything badly.

Peter Kapitsa, (1894–1984)
Nobel Prize for Physics 1978

To ask larger questions is to risk getting things wrong.
George Steiner (1929– )
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About this text

And as this is done, so all
similar problems are done.

Paolo dell’Abbaco (1282–1374)
Trattato d’aritmetica

It is better to solve one problem in five different ways
than to solve five problems in one way.

George Pólya (1887–1985)

If you go on hammering away at a problem,
it seems to get tired, lies down,

and lets you catch it.
Sir William Lawrence Bragg (1890–1971)

Nobel Prize for Physics 1915

Young man,
in mathematics you don’t understand things.

You just get used to them.
John von Neumann (1903–1957)

This is not a random collection of nice problems. Each item or problem, and
each group of problems, is included for two reasons:

• they constitute good mathematics – mathematics which repays the effort
of engaging with it for the first time, or revisiting it (should it already be
familiar);

and

• they embody in a distilled form the quintessential spirit of elementary
(initially pre-university) mathematics in a style which can be actively
enjoyed by committed students and teachers in schools and colleges, and
by the interested general reader.
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Some items exemplify core general methods, which can be used over and
over again (as hinted by the dell’Abbaco quotation). Some items require
us to take different views of ostensibly the same material (as illustrated by
the contrasting Pólya quote). Many items will at first seem elusive; but
persistence may sometimes lead to an unexpected reward (in the spirit of
the Bragg quote). In other instances, a correct answer may be obtained
– yet leave the solver less than fully satisfied (at least in the short term,
as illustrated by the von Neumann quote). And some items are of little
importance in themselves – except that they force the solver to engage in a
kind of thinking which is mathematically important.

Almost all of the included items are likely to involve – in some degree – that
frustration which characterises all fruitful problem solving (as represented
by the Bragg quote, and the William Golding quotation below), where,
if we are lucky, a bewildering initial fog of incomprehension is sometimes
magically dissipated by the process of struggling intelligently to make sense
of things. And since one cannot always expect to succeed, there are bound to
be occasions when the fog fails to lift. One may then have no choice but to
consult the solutions (either because some essential idea or technique is not
yet part of one’s stock-in-trade, or because one has overlooked some simple
connection). The only advice we can give here is: the longer you can delay
looking at the solutions the better. But these solutions have been included
both to help you improve your own efforts, and to show the way when you
get truly stuck.

The “essence of mathematics”, which we have tried to capture in these
problems is mostly implicit, and so is often left for the reader to extract.
Occasionally it has seemed appropriate to underline some aspect of a
particular problem or its solution. Some comments of this kind have been
included in the text that is interspersed between the problems. But in many
instances, the comment or observation that needs to be made can only be
appreciated after readers have struggled to solve a problem for themselves.
In such cases, positioning the observation in the main text might risk spilling
the beans prematurely. Hence, many important observations are buried away
in the solutions, or in the Notes which follow many of the solutions. More
often still, we have chosen to make no explicit remark, but have simply tried
to shape and to group the problems in such a way that the intended message
is conveyed silently by the problems themselves.

Roughly speaking, one can distinguish three types of problems: these may
be labelled as Core, as Gems, or as focusing on more general Cognition.

1. Core problems or ideas encapsulate important mathematical concepts and
mathematical knowledge in a relatively mundane way, yet in a manner that
is in some way canonical. These have sometimes been included here to
emphasise some important aspect, which contemporary treatments may
have forgotten.
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2. Gems constitute some kind of paradigm that all aspiring students of
mathematics should encounter at some stage. These are likely to be
encountered as fully fresh, or surprising, only once in a lifetime. But they
then continue to serve as beacons, or trig points, that help to delineate
the mathematical landscape.

3. The third type of problem plays an auxiliary role – namely problems
which emphasise the importance of basic cognitive skills for doing
mathematics (for example: instant mental calculation, visualisation of
abstract concepts, short-term memory, attention span, etc.)

The items are grouped into chapters – each with a recognisable theme.
Later chapters tend to have a higher level of technical demand than earlier
chapters; and the sequence is broadly consistent with a rising level of
sophistication. However, this is not a didactically organised text. Each
problem is listed where it fits most naturally, even if it involves an idea
which is not formally introduced until somewhat later. Detailed solutions,
together with any comments which would be out of place in the main text,
are grouped together at the end of each chapter.

The first few chapters tend to focus on more elementary material – partly to
emphasise the hierarchical structure of mathematics, partly as a reminder
that the essence of mathematics can be experienced at all levels, and partly
to offer a gentle introduction to readers who may appreciate something
slightly more structured before they tackle selected parts of later chapters.
Hence these early chapters include more discursive commentary than later
chapters. Readers who choose to skip these nursery slopes on a first
reading may wish to return to them later, and to consider what
this relatively elementary material tells us about the essence of
mathematics.

The collection is offered as a supplement to the standard school curriculum.
Some items could (and perhaps should) be incorporated into any official
curriculum. But the collection as a whole is mainly designed for those
who have good reason, and the time and inclination, to go beyond
the usual institutional constraints, and to begin to explore the broader
landscape of elementary mathematics in order to experience real, “free
range” mathematics – as opposed to artificially reconstituted, or processed
products.

It has come to me in a flash! One’s intelligence may march about
and about a problem, but the solution does not come gradually into
view. One moment it is not. The next and it is there.

William Golding (1911–1993), Rites of Passage
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Even a superficial glance at history shows . . .
great innovators . . . did vast amounts of computation

and gained much of their insight in this way.
I deplore the fact that contemporary mathematical education

tends to give students the idea that computation is
demeaning drudgery to be avoided at all costs.

Harold M. Edwards (1936– )
Fermat’s Last Theorem

We start our journey in a way that should be accessible to everyone – with
a quick romp through important ideas from secondary school mathematics.
The content is at times very elementary; but the problems often hint at
something more challenging. The items included in this first chapter also
highlight selected facts, techniques and ideas. Some of this early material is
included to introduce certain ideas and techniques that later chapters will
assume to be “known”. A few problems appeal to more advanced ideas (such
as complex numbers), and are included here to indicate that “mental skills”
are not restricted to elementary material.

Pencil and paper will be needed, but the items tend to focus on things
which a student of mathematics should know by heart, or should learn to
see at a glance, or should be able to calculate inside the head. In later
problems (e.g. from Problem 18 onwards) the emphasis on mental skills
should be interpreted as “ways of thinking”, rather than being taken to
mean that everything should be done in your head. This is especially true
where extended calculations or proofs are required.

Some of the items in this chapter (such as Problems 1 and 2) should be
thoroughly familiar, and are included to underline this fact, rather than
because we anticipate that they will need much active attention. Most of
the early items in this first chapter are either core or auxiliary. However,
there are also some real gems, which may even warrant a place in the the
standard core.

The chapter is largely devoted to underlining the need for mastery of a
repertoire of instantly available techniques, that can be used mentally,
quickly, and flexibly to analyse less familiar problems at sight. But it
also seeks to emphasise connections. Hence readers should be prepared to
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challenge their previous experience, in case it may have led to methods and
results being perceived too narrowly.

We repeat the comment made in the section About this book. The “essence
of mathematics”, which is referred to in the title, is largely implicit in the
problems, and is there for the reader to extract. There is some discussion
of this essence in the text interspersed between the problems. But, to
avoid spilling the beans prematurely, and hence spoiling the problems, many
important observations are buried away in the solutions, or in the Notes
which follow many of the solutions.

1.1. Mental arithmetic and algebra

1.1.1 Times tables.

Problem 1 Using only mental arithmetic:

(a) Compute for yourself, and learn by heart, the times tables up to 9ˆ 9.

(b) Calculate instantly:

(i) 0.004ˆ 0.02 (ii) 0.0008ˆ 0.07 (iii) 0.007ˆ 0.12
(iv) 1.08˜ 1.2 (v) p0.08q2 4

Multiplication tables are important for many reasons. They allow us to
appreciate directly, at first hand, the efficiency of our miraculous place
value system – in which representing any number, and implementing any
operation, are reduced to a combined mastery of

(i) the arithmetical behaviour of the ten digits 0–9, and

(ii) the index laws for powers of 10.

Fluency in mental and written arithmetic then leaves the mind free to notice,
and to appreciate, the deeper patterns and structures which may be lurking
just beneath the surface.

1.1.2 Squares, cubes, and powers of 2.

Algebra begins in earnest when we start to calculate with expressions
involving powers. As one sees in the language we use for squares and cubes
(i.e. 2nd and 3rd powers), these powers were interpreted geometrically for
hundreds and thousands of years – so that higher powers, beyond the third
power, were seen as being somehow unreal (like the 4th dimension). Our
uniform algebraic notation covering all powers emerged in the 17th century
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(with Descartes (1596–1650)). But before one begins to work with algebraic
powers, one should first aim to achieve complete fluency in working with
numerical powers.

Problem 2

(a) Compute by mental arithmetic (using pencil only to record results), then
learn by heart:

(i) the squares of positive integers: first up to 122; then to 312

(ii) the cubes of positive integers up to 113

(iii) the powers of 2 up to 210.

(b) How many squares are there: (i) ă 1000? (ii) ă 10 000? (iii) ă 100 000?

(c) How many cubes are there: (i) ă 1000? (ii) ă 10 000? (iii) ă 1 000 000?

(d) (i) Which powers of 2 are squares? (ii) Which powers of 2 are cubes?

(e) Find the smallest square greater than 1 that is also a cube. Find the next
smallest. 4

Evaluating powers, and the associated index laws, constitute an example of a
direct operation. For each direct operation, we need to think carefully about
the corresponding inverse operation – here “extracting roots”. In particular,
we need to be clear about the distinction between the fact that the equation
x2 “ 4 has two different solutions, while

?
4 has just one value (namely 2).

Problem 3

(a) The operation of “squaring” is a function : it takes a single real number
x as input, and delivers a definite real number x2 as output.

– Every positive number arises as an output (“is the square of
something”).

– Since x2 “ p´xq2, each output (other than 0) arises from at least two
different inputs.

– If a2 “ b2, then 0 “ a2´ b2 “ pa´ bqpa` bq, so either a “ b, or a “ ´b.

Hence no two positive inputs have the same square, so each output
(other than 0) arises from exactly two inputs (one positive and one
negative).

– Hence each positive output y corresponds to just one positive input,
called

?
y.

Find:
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(i)
?

49 (ii)
?

144 (iii)
?

441 (iv)
?

169

(v)
?

196 (vi)
?

961 (vii)
?

96 100

(b) Let a ą 0 and b ą 0. Then
?
ab ą 0, and

?
aˆ
?
b ą 0, so both expressions

are positive.

Moreover, they have the same square, since

p
?
abq2 “ ab “ p

?
aq2 ¨ p

?
bq2 “ p

?
aˆ

?
bq2.

6
?
a ˆ b “

?
a ˆ

?
b.

Use this fact to simplify the following:

(i)
?

8 (ii)
?

12 (iii)
?

50

(iv)
?

147 (v)
?

288 (vi)
?

882

(c) [This part requires some written calculation.] Exact expressions involving
square roots occur in many parts of elementary mathematics. We focus
here on just one example – namely the regular pentagon.

Suppose that a regular pentagon ABCDE has sides of length 1.

(i) Prove that the diagonal AC is parallel to the side ED.

(ii) If AC and BD meet at X, explain why AXDE is a rhombus.

(iii) Prove that triangles ADX and CBX are similar.

(iv) If AC has length x, set up an equation and find the exact value of x.

(v) Find the exact length of BX.

(vi) Prove that triangles ABD and BXA are similar.

(vii) Find the exact values of cos 36˝, cos 72˝.

(viii) Find the exact values of sin 36˝, sin 72˝. 4

Every calculation with square roots depends on the fact that “
?

is a
function”. That is: given y ą 0,

?
y denotes a single value – the positive number whose square is y.

The equation x2 “ y has two roots, namely x “ ˘
?
y; however,

?
y has

just one value (which is positive).

The mathematics of the regular pentagon is important – and generally
neglected. It is included here to underline the way exact expressions
involving square roots arise naturally.

In Problem 3(c), parts (iii) and (vi) require one to identify similar triangles
using angles. The fact that “corresponding sides are then proportional” leads
to a quadratic equation – and hence to square roots.

Parts (vii) and (viii) illustrate the fact that basic tools, such as
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• the trigonometric identity cos2 θ ` sin2 θ “ 1,

• the Cosine Rule, and

• the Sine Rule

should be part of one’s stock-in-trade. Notice that the exact values for

cos 36˝, cos 72˝, sin 36˝, and sin 72˝

also determine the exact values of

sin 54˝ “ cos 36˝, sin 18˝ “ cos 72˝, cos 54˝ “ sin 36˝, and cos 18˝ “ sin 72˝.

1.1.3 Primes

Problem 4

(a) Factorise 12 345 as a product of primes.

(b) Using only mental arithmetic, make a list of all prime numbers up to 100.

(c)(i) Find a prime number which is one less than a square.

(ii) Find another such prime. 4

There are 4 prime numbers less than 10; 25 prime numbers less than 100;
and 168 prime numbers less than 1000.

Problem 4(c) is included to emphasise a frequently neglected message:

Words and images are part of the way we communicate.
But most of us cannot calculate with words and images.

To make use of mathematics, we must routinely translate words into symbols.
For example, unknown numbers need to be represented by symbols, and
points in a geometric diagram need to be properly labelled, before we can
begin to calculate, and to reason, effectively.

1.1.4 Common factors and common multiples

To add two fractions we need to find a common multiple, or the LCM, of
the two given denominators. To cancel fractions, or to simplify ratios, we
need to be able to spot common factors and to find HCFs. Two positive
integers a, b which have no (positive) common factors other than 1 (that is,
with HCF pa, bq “ 1) are said to be relatively prime, or coprime.



6 Mental Skills

Problem 5 [This problem requires a mixture of serious thought and written
proof.]

(a) I choose six integers between 10 and 19 (inclusive).

(i) Prove that some pair of integers among my chosen six must be relatively
prime.

(ii) Is it also true that some pair must have a common factor?

(b) I choose six integers in the nineties (from 90–99 inclusive).

(i) Prove that some pair among my chosen integers must be relatively
prime.

(ii) Is it also true that some pair must have a common factor?

(c) I choose n` 1 integers from a run of 2n consecutive integers.

(i) Prove that some pair among the chosen integers must be relatively
prime.

(ii) Is it also true that some pair must have a common factor? 4

1.1.5 The Euclidean algorithm

School mathematics gives the impression that to find the HCF of two integers
m and n, one must first obtain the prime power factorisations of m and of
n, and can then extract the HCF from these two expressions. This is fine for
beginners. But arithmetic involves unexpected subtleties. It turns out that,
as the numbers get larger, factorising integers quickly becomes extremely
difficult – a difficulty that is exploited in modern encryption systems. (The
limitations of any method that depends on first finding the prime power
factorisation of an integer should have become clear in Problem 4(b), where
it is all too easy to imagine that 91 is prime, and in Problem 4(c)(ii), where
students regularly think that 143, or that 323 are prime.)

Hence we would like to have a simple way of finding the HCF of two integers
without having to factorise each of them first. That is what the Euclidean
algorithm provides. We will look at this in more detail later. Meanwhile
here is a first taste.

Problem 6

(a)(i) Explain why any integer that is a factor (or a divisor) of both m and n
must also be a factor of their difference m – n, and of their sum m`n.

(ii) Prove that
HCF pm,nq “ HCF pm´ n, nq.
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(iii) Use this to calculate in your head HCF p1001, 91q without factorising
either number.

(b)(i) Prove that: HCF pm,m` 1q “ 1.

(ii) Find HCF pm, 2m` 1q.

(iii) Find HCF pm2 ` 1,m´ 1q. 4

1.1.6 Fractions and ratio

Problem 7 Which is bigger: 17% of nineteen million, or 19% of seventeen
million? 4

Problem 8

(a) Evaluate
ˆ

1`
1

2

˙ˆ

1`
1

3

˙ˆ

1`
1

4

˙ˆ

1`
1

5

˙

.

(b) Evaluate

c

1`
1

2
ˆ

c

1`
1

3
ˆ

c

1`
1

4
ˆ

c

1`
1

5
ˆ

c

1`
1

6
ˆ

c

1`
1

7
.

(c) We write the product “4 ˆ 3 ˆ 2 ˆ 1” as “4!” (and we read this as “4
factorial”). Using only pencil and paper, how quickly can you work out
the number of weeks in 10! seconds? 4

Problem 9 The “DIN A” series of paper sizes is determined by two
conditions. The basic requirement is that all the DIN A rectangles are
similar ; the second condition is that when we fold a given size exactly in
half, we get the next smaller size. Hence

• a sheet of paper of size A3 folds in half to give a sheet of size A4 – which
is similar to A3; and

• a sheet of size A4 folds in half to give a sheet of size A5; etc..

(a) Find the constant ratio

r “ “(longer side length) : (shorter side length)”

for all DIN A paper sizes.
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(b)(i) To enlarge A4 size to A3 size (e.g. on a photocopier), each length is
enlarged by a factor of r. What is the “enlargement factor” to get from
A3 size back to A4 size?

(ii) To “enlarge” A4 size to A5 size (e.g. on a photocopier), each length is
“enlarged” by a factor of 1

r . What is the enlargement factor to get from
A5 size back to A4 size? 4

Problem 10

(a) In a sale which offers “15% discount on all marked prices” I buy three
articles: a pair of trainers priced at £57.74, a T-shirt priced at £17.28,
and a yo-yo priced at £4.98. Using only mental arithmetic, work out how
much I should expect to pay altogether.

(b) Some retailers display prices without adding VAT – or “sales tax” – at
20% (because their main customers need to know the pre-VAT price).
Suppose the prices in part (a) are the prices before adding VAT. Each
price then needs to be adjusted in two ways – adding VAT and subtracting
the discount. Should I add the VAT first and then work out the discount?
Or should I apply the discount first and then add the VAT?

(c) Suppose the discount in part (b) is no longer 15%. What level of discount
would exactly cancel out the addition of VAT at 20%? 4

Problem 11

(a) Using only mental arithmetic:

(i) Determine which is bigger:

1

2
`

1

5
or

1

3
`

1

4
?

(ii) How is this question related to the observation that 10 ă 12?

(b) [This part will require some written calculation and analysis.]

(i) For positive real numbers x, compare

1

x` 2
`

1

x` 5
and

1

x` 3
`

1

x` 4
.

(ii) What happens in part (i) if x is negative? 4
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1.1.7 Surds

Problem 12

(a) Expand and simplify in your head:

(i) p
?

2` 1q2 (ii) p
?

2´ 1q2 (iii) p1`
?

2q3

(b) Simplify:

(i)
a

10` 4
?

6 (ii)
a

5` 2
?

6

(iii)

b

3`
?
5

2 (iv)
a

10´ 2
?

5 4

The expressions which occur in exercises to develop fluency in working
with surds often appear arbitrary. But they may not be. The arithmetic
of surds arises naturally: for example, some of the expressions in the
previous problem have already featured in Problem 3(c). In particular, surds
will feature whenever Pythagoras’ Theorem is used to calculate lengths in
geometry, or when a proportion arising from similar triangles requires us to
solve a quadratic equation. So surd arithmetic is important. For example:

• A regular octagon with side length 1 can be surrounded by a square of
side

?
2` 1 (which is also the diameter of its incircle); so the area of the

regular octagon equals p
?

2` 1q2 ´ 1 (the square minus the four corners).

•
?

2 ´ 1 features repeatedly in the attempt to apply the Euclidean
algorithm, or anthyphairesis, to express

?
2 as a “continued fraction”.

•
a

10´ 2
?

5 may look like an arbitrary, uninteresting repeated surd, but is
in fact very interesting, and has already featured as 4 sin 36˝ in Problem
3(c).

• One of the simplest ruler and compasses constructions for a regular
pentagon ABCDE (see Problem 185) starts with a circle of radius 2,
centre O, and a point A on the circle, and in three steps constructs the
next point B on the circle, where AB is an edge of the inscribed regular
pentagon, and

AB “

b

10´ 2
?

5.

1.2. Direct and inverse procedures

We all learn to calculate – with numbers, with symbols, with functions, etc.
But we may not notice that most calculating procedures come in pairs.
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• First we learn a direct, deterministic, handle-turning technique, where
answers are easy to churn out (as with addition, or multiplication, or
working out powers, or multiplying brackets in algebra, or differentiating).

• Then we try to work backwards, or to “undo” this direct operation
(as with subtraction, or division, or finding roots, or factorising, or
integrating). This inverse procedure requires one to be completely fluent
in the corresponding direct procedure; but it is much more demanding, in
that one has to juggle possibilities as one goes, in order to home in on the
required answer.

To master inverse procedures requires a surprising amount of time and effort.
And because they are harder to master, they can easily get neglected. Even
where they receive a lot of time, there are aspects of inverse procedures
which tend to go unnoticed.

Problem 13 In how many different ways can the missing digits in this short
multiplication be completed?

l 6

ˆ l

l 2 8 4

One would like students not only to master the direct operation of
multiplying digits effectively, but also to notice that the inverse procedure
of

“identifying the multiples of a given integer that give rise to a
specified output”

depends on

the HCF of the multiplier and the base (10) of the numeral system.

• Multiplying by 1, 3, 7, or 9 induces a one-to-one mapping on the set of
ten digits 0–9; so an inverse problem such as “7 ˆ l ends in 6” has just
one digit-solution.

• Multiplying by 2, 4, 6, or 8 induces a two-to-one mapping onto the set of
even digits (multiples of 2); so an inverse problem such as “6ˆ l ends in
4” has two digit-solutions, and an inverse problem such as “6ˆ l ends in
3” has no digit-solutions.

• Multiplying by 5 induces a five-to-one mapping onto the multiples (0
and 5) of 5, so an inverse problem such as “5 ˆ l ends in 0” has five
digit-solutions and an inverse problem such as “5 ˆ l ends in 3” has no
digit-solutions at all.
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• Multiplying by 0 induces a ten-to-one mapping onto the multiples of 0
(namely 0); so an inverse problem such as “0 ˆ l ends in 0” has ten
digit-solutions and an inverse problem such as “0 ˆ l ends in 3 (or any
digit other than 0)” has no digit-solutions at all.

The next problem shows – in a very simple setting – how elusive inverse
problems can be. Here, instead of being asked to perform a direct calculation,
the rules and the answer are given, and we are simply asked to invent a
calculation that gives the specified output.

Problem 14

(a) In the “24 game” you are given four numbers. Your job is to use each
number once, and to combine the four numbers using any three of the
four basic arithmetical operations – using the same operation more than
once if you wish, and as many brackets as you like (but never concatenating
different numbers, such as “3” and “4” to make “34”). If the given numbers
are 3, 3, 4, 4, then one immediately sees 3ˆ 4` 3ˆ 4 “ 24. With 3, 3, 5,
5 it may take a little longer, but is still fairly straightforward. However,
you may find it more challenging to make 24 in this way:

(i) using the four numbers 3, 3, 6, 6

(ii) using the four numbers 3, 3, 7, 7

(iii) using the four numbers 3, 3, 8, 8.

(b) Suppose we restrict the numbers to be used each time to “four 4s”
p4, 4, 4, 4q, and change the goal from “make 24”, to “make each answer
from 0–10 using exactly four 4s”.

(i) Which of the numbers 0–10 cannot be made?

(ii) What if one is allowed to use squaring and square roots as well as the
four basic operations? What is the first inaccessible integer? 4

Calculating by turning the handle deterministically (as with addition, or
multiplication, or multiplying out brackets, or differentiating) is a valuable
skill. But such direct procedures are usually only the beginning. Using
mathematics and solving problems generally depend on the corresponding
inverse procedures – where a certain amount of juggling and insight is
needed in order to work backwards (as with subtraction, or division, or
factorisation, or integration). For example, in applications of calculus, the
main challenge is to solve differential equations (an inverse problem) rather
than to differentiate known functions.

Problem 14 captures the spirit of this idea in the simplest possible context
of arithmetic: the required answer is given, and we have to find how (or
whether) that answer can be generated. We will meet more interesting
examples of this kind throughout the rest of the collection.



12 Mental Skills

1.2.1 Factorisation

Problem 15

(a)(i) Expand (a` bq2 and pa` bq3.

(ii) Without doing any more work, write out the expanded forms of pa´bq2

and pa´ bq3.

(b) Factorise (i) x2 ` 2x` 1 (ii) x4 ´ 2x2 ` 1 (iii) x6 ´ 3x4 ` 3x2 ´ 1.

(c)(i) Expand pa´ bqpa` bq.

(ii) Use (c)(i) and (a)(i) to write down (with no extra work) the expanded
form of

pa´ b´ cqpa` b` cq

and of
pa´ b` cqpa` b´ cq.

(d) Factorise 3x2 ` 2x´ 1. 4

1.3. Structural arithmetic

Whenever the answer to a question turns out to be unexpectedly nice, one
should ask oneself whether this is an accident, or whether there is some
explanation which should perhaps have led one to expect such a result. For
example:

• Exactly 25 of the integers up to 100 are prime numbers – and 25 is exactly
one quarter of 100. This is certainly a beautifully memorable fact. But
it is a numerical fluke, with no hidden mathematical explanation.

• 11 and 101 are prime numbers. Is this perhaps a way of generating lots of
prime numbers:

11, 101, 1001, 10 001, 100 001, . . .?

It may at first be tempting to think so – until, that is, you remember what
you found in Problem 6(a)(iii).

Problem 16 Write out the first 12 or so powers of 4:

4, 16, 64, 256, 1024, 4096, 16 384, 65 536, . . .

Now create two sequences:
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the sequence of final digits: 4, 6, 4, 6, 4, 6, . . .
the sequence of leading digits: 4, 1, 6, 2, 1, 4, 1, 6, . . .

Both sequences seem to consist of a single “block”, which repeats over and
over for ever.

(a) How long is the apparent repeating block for the first sequence? How long
is the apparent repeating block for the second sequence?

(b) It may not be immediately clear whether either of these sequences really
repeats forever. Nor may it be clear whether the two sequences are alike,
or whether one is quite different from the other. Can you give a simple
proof that one of these sequences recurs, that is, repeats forever?

(c) Can you explain why the other sequence seems to recur, and decide
whether it really does recur forever? 4

Problem 17 The 4 by 4 “multiplication table” below is completely familiar.

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

What is the total of all the numbers in the 4 by 4 square? How should one
write this answer in a way that makes the total obvious? 4

1.4. Pythagoras’ Theorem

From here on the idea of “mental skills” tends to refer to ways of thinking
rather than to doing everything in your head.

Pythagoras’ Theorem is one of the first truly surprising results in school
mathematics: it is hard to see why anyone would think of “adding the squares
of the two shorter sides”. Despite the apparent attribution to a named person
(Pythagoras), the origin of the theorem, and its proof, are unclear. There
certainly was someone called Pythagoras (around 500 BC). But the main
ancient references to him were written many hundreds of years after he died,
and are not very reliable. The truth is that we know very little about him, or
his theorem. The proof in Problem 18 below appeared in Book I of Euclid’s
thirteen books of Elements (written around 300 BC – two hundred years
after Pythagoras). Much that is said (wrongly) to stem from Pythagoras is
attributed in some sources to the Pythagoreans – a loose term which refers
to any philosopher in what is seen as a tradition going back to Pythagoras.
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(This is a bit like interpreting anything called Christian in the last 2000
years as stemming directly from Christ himself.)

Clay tablets from around 1700 BC suggest that some Babylonians must have
known “Pythagoras’ Theorem”; and it is hard to see how one could know the
result without having some kind of justification. But we have no evidence
of either a clear statement, or a proof, at that time. There are also Chinese
texts that refer to Pythagoras’ Theorem (or as they call it, “Gougu”), which
are thought to have originated BC – though the earliest surviving edition is
from the 13th century AD. There is even an interesting little book by Frank
Swetz, with the tongue-in-cheek title Was Pythagoras Chinese?.

The history may be confused, but the result – and its Euclidean proof
– embodies something of the surprise and elegance of the very best
mathematics. The Euclidean proof is included here partly because it is
one that can, and should, be remembered (or rather, reconstructed – once
one realises that there is really only one possible way to split the “square on
the hypotenuse” in the required way). But, as we shall see, the result also
links to exact mental calculation with surds, to trigonometry, to the familiar
mnemonic “CAST”, to the idea of a “converse”, to sums of two squares, and
to Pythagorean triples.

1.4.1 Pythagoras’ Theorem, trig for special angles, and CAST

Problem 18 (Pythagoras’ Theorem) Let 4ABC be a right angled
triangle, with a right angle at C. Draw the squares ACQP , CBSR, and
BAUT on the three sides, external to 4ABC. Use the resulting diagram to
prove in your head that the square BAUT on BA is equal to the sum of the
other two squares by:

• drawing the line through C perpendicular to AB, to meet AB at X and
UT at Y

• observing that PA is parallel to QCB, so that 4ACP (half of the square
ACQP , with base AP and perpendicular height AC) is equal in area to
4ABP (with base AP and the same perpendicular height)

• noting that 4ABP is SAS-congruent to 4AUC, and that 4AUC is equal
in area to 4AUX (half of rectangle AUY X, with base AU and height
AX).

• whence ACQP is equal in area to rectangle AUY X

• similarly BCRS is equal in area to BTY X. 4

The proof in Problem 18 is the proof to be found in Euclid’s Elements Book
1, Proposition 47. Unlike many proofs,
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• it is clear what the proof depends on (namely SAS triangle congruence,
and the area of a triangle), and

• it reveals exactly how the square on the hypotenuse AB divides into two
summands – one equal to the square on AC and one equal to the square
on BC.

Problem 19

(a) Use Pythagoras’ Theorem in a square ABCD of side 1 to show that the
diagonal AC has length

?
2. Use this to work out in your head the exact

values of sin 45˝, cos 45˝, tan 45˝.

(b) In an equilateral triangle 4ABC with sides of length 2, join A to the
midpoint M of the base BC. Apply Pythagoras’ Theorem to find AM .
Hence work out in your head the exact values of sin 30˝, cos 30˝, tan 30˝,
sin 60˝, cos 60˝, tan 60˝.

(c)(i) On the unit circle with centre at the origin O : p0, 0q, mark the point
P so that P lies in the first quadrant, and so that OP makes an angle
θ with the positive x-axis (measured anticlockwise from the positive
x-axis). Explain why P has coordinates pcos θ, sin θq.

(ii) Extend the definitions of cos θ and sin θ to apply to angles beyond the
first quadrant, so that for any point P on the unit circle, where OP
makes an angle θ measured anticlockwise from the positive x-axis, the
coordinates of P are pcos θ, sin θq. Check that the resulting functions
sin and cos satisfy:

∗ sin and cos are both positive in the first quadrant,

∗ sin is positive and cos is negative in the second quadrant,

∗ sin and cos are both negative in the third quadrant, and

∗ sin is negative and cos is positive in the fourth quadrant.

(iii) Use (a), (b) to calculate the exact values of cos 315˝, sin 225˝, tan 210˝,
cos 120˝, sin 960˝, tanp´135˝q.

(d) Given a circle of radius 1, work out the exact area of a regular n-gon
inscribed in the circle:

(i) when n “ 3 (ii) when n “ 4 (iii) when n “ 6
(iv) when n “ 8 (v) when n “ 12.

(e) Given a circle of radius 1, work out the area of a regular n-gon
circumscribed around the circle:

(i) when n “ 3 (ii) when n “ 4 (iii) when n “ 6
(iv) when n “ 8 (v) when n “ 12. 4
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Knowing the exact values of sin, cos and tan for the special angles 0˝,
30˝, 45˝, 60˝, 90˝ is like knowing one’s tables. In particular, it allows one
to evaluate trigonometric functions mentally for related angles in all four
quadrants (using the CAST mnemonic – C being in the SE of the unit
circle, A in the NE quadrant, S in the NW quadrant, and T in the SW
quadrant – to remind us which functions are positive in each quadrant).
These special angles arise over and over again in connection with equilateral
triangles, squares, regular hexagons, regular octagons, regular dodecagons,
etc., where one can use what one knows to calculate exactly in geometry.

Problem 20

(a) Use Pythagoras’ Theorem to calculate the exact length of the diagonal
AC in a square ABCD of side length 2.

(b) Let X be the centre of the square ABCD in part (a). Draw lines through
X parallel to the sides of ABCD and so divide the large square into four
smaller squares, each of side 1. Find the length of the diagonals AX and
XC.

(c) Compare your answers to parts (a) and (b) and your answer to Problem
3(b)(i). 4

Pythagoras’ Theorem holds the key to calculating exact distances in the
plane. To calculate distances on the Earth’s surface one needs a version of
Pythagoras for “right angled triangles” on the sphere. We address this in
Chapter 5.

1.4.2 Converses and Pythagoras’ Theorem

Each mathematical statement of the form

“if . . . (Hypothesis H),
then . . . (Consequence C)”

has a converse statement – namely

“if C,
then H”.

If the first statement is true, there is no a priori reason to expect its converse
to be true. For example, part (c) of Problem 25 below proves that

“if an integer has the form 4k ` 3,
then it cannot be written as the sum of two squares”.

However, the converse of this statement
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“if an integer cannot be written as a sum of two squares,
then it has the form 4k ` 3”

is false – since 6 cannot be written as the sum of two squares.

Despite this counterexample, whenever we prove a standard result, it makes
sense to ask whether the converse is also true. For example,

“if PQRS is a parallelogram, then opposite angles are equal:
=P “ =R, and =Q “ =S” (see Problem 157(ii)).

However you may not have considered the truth (or otherwise) of the
converse statement:

If ABCD is a quadrilateral in which opposite angles are equal
(=A “ =C and =B “ =D), is it true that ABCD has to be a
parallelogram?

The next problem invites you to prove the converse of Pythagoras’ Theorem.
You should not use the Cosine Rule, since this is a generalisation of both
Pythagoras’ Theorem and its converse.

Problem 21 Let ABC be a triangle. We use the standard labelling
convention, whereby the side BC opposite A has length a, the side CA
opposite B has length b, and the side AB opposite C has length c.

Prove that, if c2 “ a2 ` b2, then =BCA is a right angle. 4

1.4.3 Pythagorean triples

The simplest example of a right angled triangle with integer length sides is
given by the familiar triple 3, 4, 5:

32 ` 42 “ 52.

Any such integer triple is called a Pythagorean triple.

The classification of all Pythagorean triples is a delightful piece of elementary
number theory, which is included in this chapter both because the result
deserves to be memorised, and because (like Pythagoras’ Theorem itself)
the proof only requires one to juggle a few simple ideas that should be part
of one’s armoury.

Pythagorean triples arise in many contexts (e.g. see the text after Problem
180). The classification given here shows that Pythagorean triples form a
family depending on three parameters p, q, s (in which s is simply a “scaling”
parameter, so the most important parameters are p, q). As a warm-up we
consider two “one-parameter subfamilies” related to the triple 3, 4, 5.
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Problem 22 Suppose a2 ` b2 “ c2 and that b, c are consecutive integers.

(a) Prove that a must be odd – so we can write it as a “ 2m ` 1 for some
integer m.

(b) Prove that c must be odd – so we can write it as c “ 2n ` 1 for some
integer n. Find an expression for n in terms of m. 4

Problem 22 reveals the triple p3, 4, 5q as the first instance (m “ 1) of a
one-parameter infinite family of triples, which continues

p5, 12, 13q pm “ 2q, p7, 24, 25q pm “ 3q, p9, 40, 41q pm “ 4q, . . . ,

whose general term is

p2m` 1, 2mpm` 1q, 2mpm` 1q ` 1q.

The triple p3, 4, 5q is also the first member of a quite different “one-parameter
infinite family” of triples, which continues

p6, 8, 10q, p9, 12, 15q, . . . .

Here the triples are scaled-up versions of the first triple p3, 4, 5q.

In general, common factors simply get in the way:

If a2 ` b2 “ c2 and HCF pa, bq “ s, then s2 divides a2 ` b2, and
a2 ` b2 “ c2; so s divides c.
And if a2`b2 “ c2 and HCF pb, cq “ s, then s2 divides c2´b2 “ a2,
so s divides a.

Hence a typical Pythagorean triple has the form psa, sb, scq for some scale
factor s, where pa, b, cq is a triple of integers, no two of which have a common
factor: any such triple is said to be primitive (that is, basic – like prime
numbers). Every Pythagorean triple is an integer multiple of some primitive
Pythagorean triple. The next problem invites you to find a simple formula
for all primitive Pythagorean triples.

Problem 23 Let pa, b, cq be a primitive Pythagorean triple.

(a) Show that a and b have opposite parity (i.e. one is odd, the other even) –
so we may assume that a is odd and b is even.

(b) Show that
ˆ

b

2

˙2

“

ˆ

c´ a

2

˙ˆ

c` a

2

˙

,
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where

HCF

ˆ

c´ a

2
,
c` a

2

˙

“ 1

and c´a
2 , c`a2 have opposite parity.

(c) Conclude that
c` a

2
“ p2 and

c´ a

2
“ q2,

where HCF pp, qq “ 1 and p and q have opposite parity, so that c “ p2`q2,
a “ p2 ´ q2, b “ 2pq.

(d) Check that any pair p, q having opposite parity and with HCF pp, qq “ 1
gives rise to a primitive Pythagorean triple

c “ p2 ` q2, a “ p2 ´ q2, b “ 2pq

satisfying a2 ` b2 “ c2. 4

Problem 24 The three integers a “ 3, b “ 4, c “ 5 in the Pythagorean
triple p3, 4, 5q form an arithmetic progression: that is, c ´ b “ b ´ a. Find
all Pythagorean triples pa, b, cq which form an arithmetic progression – that
is, for which c´ b “ b´ a. 4

1.4.4 Sums of two squares

The classification of Pythagorean triples tells us precisely which squares can
be written as the sum of two squares. We now turn to the wider question:
“Which integers are equal to the sum of two squares?”

Problem 25

(a) Which of the prime numbers ă 100 can be written as the sum of two
squares?

(b) Find an easy way to immediately write pa2 ` b2qpc2 ` d2q in the form
px2`y2q. (This shows that the set of integers which can be written as the
sum of two squares is “closed” under multiplication.)

(c) Prove that no integer (and hence no prime number) of the form 4k ` 3
can be written as the sum of two squares.

(d) The only even prime number can clearly be written as a sum of two
squares: 2 “ 12 ` 12. Euler (1707–1783) proved that every odd prime
number of the form 4k ` 1 can be written as the sum of two squares in
exactly one way. Find all integers ă 100 that can be written as a sum of
two squares.



20 Mental Skills

(e) For which integers N ă 100 is it possible to construct a square of area N ,
with vertices having integer coordinates? 4

In Problem 25 parts (a) and (d) you had to decide which integers ă 100
can be written as a sum of two squares as an exercise in mental arithmetic.
In part (b) the fact that this set of integers is closed under multiplication
turned out to be an application of the arithmetic of norms for complex
numbers. Part (e) then interpreted sums of two squares geometrically by
using Pythagoras’ Theorem on the square lattice. These exercises are worth
engaging in for their own sake. But it may also be of interest to know that
writing an integer as a sum of two squares is a serious mathematical question
– and in more than one sense.

Gauss (1777–1855), in his book Disquisitiones arithmeticae (1801) gave a
complete analysis of when an integer can be represented by a ‘quadratic
form’, such as x2 ` y2 (as in Problem 25) or x2 ´ 2y2 (as in Problem 54(c)
in Chapter 2).

A completely separate question (often attributed to Edward Waring
(1736–1798)) concerns which integers can be expressed as a kth power, or as
a sum of n such powers. If we restrict to the case k “ 2 (i.e. squares), then:

• When n “ 2, Euler (1707–1783) proved that the integers that can be
written as a sum of two squares are precisely those of the form

m2 ˆ p0 ˆ p1 ˆ p2 ˆ ¨ ¨ ¨ ˆ ps,

where p0 “ 1 or 2, and p1 ă p2 ă ¨ ¨ ¨ ă ps are odd primes of the form
4l ` 1.

• When n “ 3, Legendre (1752–1833) and Gauss proved between them that
the integers which can be written as a sum of three squares are precisely
those that are not of the form 4m ˆ p8l ` 7q.

• When n “ 4, Lagrange (1736–1813) had previously proved that every
positive integer can be written as a sum of four squares.

1.5. Visualisation

Problem 26 (Pages of a newspaper) I found a (double) sheet from an
old newspaper, with pages 14 and 27 next to each other. How many pages
were there in the original newspaper? 4

Problem 27 (Overlapping squares) A square ABCD of side 2 sits on
top of a square PQRS of side 1, with vertex A at the centre O of the small
square, side AB cutting the side PQ at the point X, and =AXQ “ θ.
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(a) Calculate the area of the overlapping region.

(b) Replace the two squares in part (a) with two equilateral triangles. Can
you find the area of overlap in that case? What if we replace the squares
(i.e. regular 4-gons) in part (a) with regular 2n-gons? 4

Problem 28 (A folded triangle) The equilateral triangle 4ABC has
sides of length 1 cm. D and E are points on the sides AB and AC
respectively, such that folding 4ADE along DE folds the point A onto
A1 which lies outside 4ABC.

What is the total perimeter of the region formed by the three single layered
parts of the folded triangle (i.e. excluding the quadrilateral with a folded
layer on top)? 4

Problem 29 (A `B “ C) The 3 by 1 rectangle ADEH consists of three
adjacent unit squares: ABGH, BCFG, CDEF left to right, with A in the
top left corner. Prove that

=DAE `=DBE “ =DCE. 4

Problem 30 (Dissections)

(a) Joining the midpoints of the edges of an equilateral triangle ABC cuts
the triangle into four identical smaller equilateral triangles. Removing
one of the three outer small triangles (say AMN , with M on AC) leaves
three-quarters of the original shape in the form of an isosceles trapezium
MNBC. Show how to cut this isosceles trapezium into four congruent
pieces.

(b) Joining the midpoints of opposite sides of a square cuts the square into
four congruent smaller squares. If we remove one of these squares, we are
left with three-quarters of the original square in the form of an L-shape.
Show how to cut this L-shape into four congruent pieces. 4

Problem 31 (Yin and Yang) The shaded region in Figure 1, shaped like
a large comma, is bounded by three semicircles – two of radius 1 and one of
radius 2.

Cut each region (the shaded region and the unshaded one) into two ‘halves’,
so that all four parts are congruent (i.e. of identical size and shape, but with
possibly different orientations). 4
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Figure 1: Yin and Yang

In Problem 31 your first thought may have been that this is impossible.
However, since the wording indicated that you are expected to succeed, it
was clear that you must be missing something – so you tried again. The
problem then tests both flexibility of thinking, and powers of visualisation.

1.6. Trigonometry and radians

1.6.1 Sine Rule

School textbooks tend to state the Sine Rule for a triangle ABC without
worrying why it is true. So they often fail to give the result in its full form:

Theorem If R is the radius of the circumcircle of the triangle ABC, then

a

sinA
“

b

sinB
“

c

sinC
“ 2R.

This full form explains that the three ratios

a

sinA
,

b

sinB
,

c

sinC

are all equal because they are all equal to the diameter 2R of the circumcircle
of 4ABC – an additional observation which may well suggest how to prove
the result (see Problem 32).

Problem 32 Given any triangle ABC, construct the perpendicular
bisectors of the two sides AB and BC. Let these two perpendicular bisectors
meet at O.

(a) Explain why OA “ OB “ OC.

(b) Draw the circle with centre O and with radius OA. There are three
possibilities:

(i) The centre O lies on one of the sides of triangle ABC.

(ii) The centre O lies inside triangle ABC.

(iii) The centre O lies outside triangle ABC.
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Case (i) leads directly to the Sine Rule for a right angled triangle ABC
(remembering that sin 90˝ “ 1). We address case (ii), and leave case (iii)
to the reader.

(ii) Extend the line BO to meet the circle again at the point A1. Explain
why =BA1C “ =BAC “ =A, and why =A1CB is a right angle.
Conclude that

sinA “
BC

A1B
“

a

2R
,

and hence that

a

sinA
“ 2R

ˆ

“
b

sinB
“

c

sinC

˙

. 4

Problem 33 Let ∆ “ areap4ABCq.

(a) Prove that

∆ “
1

2
¨ ab ¨ sinC.

(b) Prove that 4R∆ “ abc. 4

1.6.2 Radians and spherical triangles

There is no God-given unit for measuring distance; different choices of unit
give rise to answers that are related by scaling. However the situation is
different for angles. In primary and secondary school we measure turn in
degrees – where a half turn is 180˝, a right angle is 90˝, and a complete turn
is 360˝. This angle unit dates from the ancient Babylonians („ 2000 BC).
We are not sure why they chose 360 units in a full turn, but it seems to
be related to the approximate number of days in a year (the time required
for the heavens to make a complete rotation in the night sky), and to the
fact that they wrote their numbers in “base 60”. However the choice is
no more objectively mathematical than measuring distance in inches or in
centimetres.

After growing up with the idea that angles are measured in degrees, we
discover towards the end of secondary school that:

there is another unit of measure for angles – namely radians.

It may not at first be clear that this is an entirely natural, God-given unit.
The size of, or amount of turn in, an angle at the point A can be captured
in an absolute way by drawing a circle of radius r centred at the point A,
and measuring the arc length which the angle cuts off on this circle. The
angle size (in radians) of the angle at A is then defined to be the ratio

arc length

radius
.
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That is,

size of angle at the point A “ arc length cut off on a circle of radius 1,

centred at the apex A.

Hence a right angle is of size π
2 radians; a half turn is equal to π (radians);

a full turn is equal to 2π (radians); each angle in an equilateral triangle is
equal to π

3 (radians); the three angles of a triangle have sum π; and the
angles of a polygon with n sides have sum pn ´ 2qπ (see Problem 230 in
Chapter 6).

For a while after the introduction of radians we continue to emphasise the
word radians each time we give the measure of an angle in order to stress
that we are no longer using degrees. But this is not really a switch to a new
unit: this new way of measuring angles is in some sense objective – so we
soon drop all mention of the word “radians” and simply refer to the size of
an angle (in radians) as if it were a pure number.

This switch affects the meaning of the familiar trigonometric functions. And
though we continue to use the same names (sin, cos, tan, etc.), they become
slightly different as functions, since the inputs are now always assumed to
be in radians.

The real payoff for making this change stems from the way it recognizes
the connection between angles and circles. This certainly makes calculating
circular arc lengths and areas of sectors easy (an arc with angle θ on a circle
of radius r now has length θr; and a circular sector with angle 2θ now has
area θr2). But the main benefit – which one hopes all students appreciate
eventually – is that this change of perspective highlights the fundamental
link between sinx, cosx, and ex:

• “cosx” becomes the derivative of sinx

• “´ sinx” becomes the derivative of cosx, and

• the three functions are related by the totally unexpected identity

eiθ “ cos θ ` i sin θ.

The next problem draws attention to a beautiful result which reveals, in a
pre-calculus, pre-complex number setting, a beautiful consequence of thinking
about angles in terms of radians. The goal is to discover a formula for the
area of a spherical triangle in terms of its angles and π, which links the
formula for the circumference of a circle with that for the surface area of a
sphere.

Suppose we wish to do geometry on the sphere. There is no problem deciding
how to make sense of points. But it is less clear what we mean by (straight)
lines, or line segments.
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Before making due allowance for the winds and the tides, an airline pilot and
a ship’s Captain both need to know how to find the shortest path joining
two given points A, B on a sphere. If the two points both lie on the equator,
it is plausible (and correct) that the shortest route is to travel from A to
B along the equator. If we think of the equator as being in a horizontal
plane through the centre O of the sphere, then we may notice that we can
change the equator into a circle of longitude by rotating the sphere so that
the “horizontal” plane (through O) becomes a “vertical” plane (through O).
So we may view two points A and B which both lie on the same circle of
longitude as lying on a “vertical equator” passing through A, B and the
North and South poles: the shortest distance from A to B must therefore
lie along that circle of longitude.

If we now rotate the sphere through some other angle, we get a “tilted
equator” passing through the images of the (suitably tilted) points A and
B: these “tilted equators” are called great circles. Each great circle is the
intersection of the sphere with a plane through the centre O of the sphere.
So

to find the shortest path from A to B:

• take the plane determined by the points A, B and the centre of
the sphere O;

• find the great circle where this plane cuts the sphere;

• then follow the arc from A to B along this great circle.

Once we have points and line segments (i.e. arcs of great circles) on the
sphere, we can think about triangles, and about the angles in such a triangle.
In a triangle ABC on the sphere, the sides AB and AC are arcs of great
circles meeting at A. By rotating the sphere we can imagine A as being at
the North pole; so the two sides AB and AC behave just like arcs of two
circles of longitude emanating from the North pole. In particular, we can
measure the angle between them (this is exactly how we measure longitude):
the two arcs AB, AC of circles of longitude set off from the North pole A
in different horizontal directions before curving southwards, and the angle
between them is the angle between these two initial horizontal directions
(that is, the angle between the plane determined by O, A, B and the plane
determined by O, A, C).

Problem 34 Imagine a triangle ABC on the unit sphere (with radius r “
1), with angle α between AB and AC, angle β between BC and BA, and
angle γ between CA and CB. You are now in a position to derive the
remarkable formula for the area of such a spherical triangle.
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Figure 2: Angles on a sphere

(a) Let the two great circles containing the sides AB and AC meet again at
A1. If we imagine A as being at the North pole, then A1 will be at the
South pole, and the angle between the two great circles at A1 will also be
α. The slice contained between these two great circles is called a lune with
angle α.

(i) What fraction of the surface area of the whole sphere is contained in
this lune of angle α? Write an expression for the actual area of this
lune.

(ii) If the sides AB and AC are extended backwards through A, these
backward extensions define another lune with the same angle α, and
the same surface area. Write down the total area of these two lunes
with angle α.

(b)(i) Repeat part (a) for the two sides BA, BC meeting at the vertex B, to
find the total area of the two lunes meeting at B and B1 with angle β.

(ii) Do the same for the two sides CA, CB meeting at the vertex C, to find
the total area of the two lunes meeting at C and C 1 with angle γ.

(c)(i) Add up the areas of these six lunes (two with angle α, two with angle
β, and two with angle γ). Check that this total includes every part of
the sphere at least once.

(ii) Which parts of the sphere have been covered more than once? How
many times have you covered the area of the original triangle ABC?
And how many times have you covered the area of its sister triangle
A1B1C 1?

(iii) Hence find a formula for the area of the triangle ABC in terms of its
angles – α at A, β at B, and γ at C. 4



1.7. Trigonometry and radians 27

1.6.3 Polar form and sin(A+B)

The next problem is less elementary than most of Chapter 1, but is included
here to draw attention to the ease with which the addition formulae in
trigonometry can be reconstructed once one knows about the polar form
representation of a complex number. Those who are as yet unfamiliar with
this material may skip the problem – but should perhaps remember the
underlying message (namely that, once one is familiar with this material,
there is no need ever again to get confused about the trig addition formulae).

Problem 35

(a) You may know that any complex number z “ cos θ ` i sin θ of modulus 1
(that is, which lies on the unit circle centred at the origin) can be written
in the modulus form z “ eiθ. Use this fact to reconstruct in your head
the trigonometric identities for sinpA`Bq and for cospA`Bq. Use these
to derive the identity for tanpA`Bq.

(b) By choosing X, Y so that A “ X`Y
2 , and B “ X´Y

2 , use part (a) to
reconstruct the standard trigonometric identities for

sinX ` sinY, sinX ´ sinY, cosX ` cosY, cosX ´ cosY.

(c)(i) Check your answer to (a) for sinpA` Bq by substituting A “ 30˝, and
B “ 60˝.

(ii) Check your answer to (b) for cosX ´ cosY by substituting X “ 60˝,
and Y “ 0˝.

(d)(i) If A`B ` C `D “ π, prove that

sinA sinB ` sinC sinD “ sinpB ` Cq sinpB `Dq.

(ii) Given a cyclic quadrilateral WXY Z, with =XWY “ A, =WXZ “ B,
=Y XZ “ C, =WYX “ D, deduce Ptolemy’s Theorem:

WX ˆ Y Z `WZ ˆXY “WY ˆXZ. 4

1.7. Regular polygons and regular polyhedra

Regular polygons have already featured rather often (e.g. in Problems 3,
12, 19, 27, 28, 29). This is a general feature of elementary mathematics; so
the neglect of the geometry of regular polygons, and their 3D companions,
the regular polyhedra, is all the more unfortunate. We end this first chapter
with a first brief look at polygons and polyhedra.
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1.7.1 Regular polygons are cyclic

Problem 36 A polygon ABCDE ¨ ¨ ¨ consists of n vertices A, B, C, D,
E, . . . , and n sides AB, BC, CD, DE . . . which are disjoint except that
successive pairs meet at their common endpoint (as when AB, BC meet
at B). A polygon is regular if any two sides are congruent (or equal), and
any two angles are congruent (or equal). Can a regular n-gon ABCDE ¨ ¨ ¨
always be inscribed in a circle? In other words, does a regular polygon
automatically have a “centre”, which is equidistant from all n vertices? 4

1.7.2 Regular polyhedra

Problem 37 (Wrapping)

(a) You are given a regular tetrahedron with edges of length 2. Is it possible
to choose positive real numbers a and b so that an a by b rectangular sheet
of paper can be used to “wrap”, or cover, the regular tetrahedron without
leaving any gaps or overlaps?

(b) Given a cube with edges of length 2, what is the smallest sized rectangle
that can be used to wrap the cube in the same way without cutting the
paper? (In other words, if we want to completely cover the cube, what is
the smallest area of overlap needed? How small a fraction of the paper do
we have to waste?) 4

Problem 38 (Cross-sections) Can a cross-section of a cube be:

(i) an equilateral triangle?

(ii) a square?

(iii) a polygon with more than six sides?

(iv) a regular hexagon?

(v) a regular pentagon? 4

Problem 39 (Shadows) Can one use the Sun’s rays to produce a plane
shadow of a cube:

(i) in the form of an equilateral triangle?

(ii) in the form of a square?
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(iii) in the form of a pentagon?

(iv) in the form of a regular hexagon?

(v) in the form of a polygon with more than six sides? 4

The imparting of factual knowledge is for us a secondary consideration.
Above all we aim to promote in the reader a correct attitude, a certain
discipline of thought, which would appear to be of even more essential

importance in mathematics than in other scientific disciplines. . . .

General rules which could prescribe in detail the most useful discipline of
thought are not known to us. Even if such rules could be formulated, they

would not be very useful. Rather than knowing the correct rules of thought
theoretically, one must have assimilated them into one’s flesh and blood

ready for instant and instinctive use. Therefore for the schooling of one’s
powers of thought only the practice of thinking is really useful.

G. Pólya (1887–1985) and G. Szegő (1895–1985)

1.8. Chapter 1: Comments and solutions

1.

(a) Assuming that the 2ˆ, 3ˆ, 4ˆ, and 5ˆ tables are known, and that one has
understood that the order of the factors does not matter, all that remains to be
learned is 6ˆ 6, 6ˆ 7, 6ˆ 8, 6ˆ 9; 7ˆ 7, 7ˆ 8, 7ˆ 9; 8ˆ 8, 8ˆ 9; and 9ˆ 9.

(b)(i) p4ˆ 10´3
q ˆ p2ˆ 10´2

q “ 8ˆ 10´5
“ 0.00008

(ii) p8ˆ 10´4
q ˆ p7ˆ 10´2

q “ 56ˆ 10´6
“ 0.000056

(iii) p7ˆ 10´3
q ˆ p12ˆ 10´2

q “ 84ˆ 10´5
“ 0.00084

(iv) 1.08˜ 1.2 “ 10.8˜ 12 “ 108˜ p12ˆ 10q “ 0.9

(v) p8ˆ 10´2
q
2
“ 64ˆ 10´4

“ 0.0064

2.

(a)(i) 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144;

169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784,
841, 900, 961

(ii) 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331

(iii) 1 “ 20, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

(b)(i) 31 (312
“ 961, 322

“ 210
“ 1024)

(ii) 99 (1002
“ 104

“ 10 000)

(iii) 316 (3102
“ 96 100 ă 100 000 ă 3202; so look more carefully between 310 and

320)
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(c)(i) 9 (93
“ 729 ă 103

“ 1000)

(ii) 21 (203
“ 8000, 223

“ 10 648)

(iii) 99 (1003
“ 106

“ 1 000 000)

(d)(i) Those powers 2e of the form 22n for which the exponent e is a multiple of 2:
i.e. e ” 0 pmod 2q.

(ii) Those powers 2e of the form 23n for which the exponent e is a multiple of 3:
i.e. e ” 0 pmod 3q.

(e) 64 “ 26
“ 43

“ 82. 729 “ 36
“ 93

“ 272.

3.

(a) (i) 7; (ii) 12; (iii) 21; (iv) 13; (v) 14; (vi) 31; (vii) 10ˆ 31 “ 310

(b) (i) 2
?

2; (ii) 2
?

3; (iii) 5
?

2; (iv) 7
?

3; (v) 12
?

2; (vi) 21
?

2

(c)(i) =ABC “ 108˝. 4BAC is isosceles (BA “ BC), so =BAC “ =BCA “ 36˝.

6 =CAE “ =BAE ´=BAC “ 72˝ “ 180˝ ´=AED.

So AC is parallel to ED (since corresponding angles add to 180˝).

(ii) AX is parallel to ED; similarly DX is parallel to EA. Hence AXDE is a
parallelogram, with EA “ ED.

(iii) The two triangles are both isosceles and =AXD “ =CXB “ 108˝ (vertically
opposite angles).

Hence =XAD “ =XCB “ 36˝, and =XDA “ =XBC “ 36˝.

(iv) AD : CB “ DX : BX, so x : 1 “ 1 : px ´ 1q; hence x2 ´ x ´ 1 “ 0 and

x “ 1`
?
5

2
– the Golden Ratio, usually denoted by the Greek letter τ (tau),

with approximate value 1.6180339887 . . . .

(v) BX “ x´1 “
?
5´1
2

(“ 1
τ
“ τ´1), with approximate value 0.6180339887 . . . .

(vi) We may either check that corresponding angles are equal in pairs
p36˝, 72˝, 72˝q, or that corresponding sides are in the same ratio x : 1 “
1 : px´ 1).

(vii) cos 36˝ “
?
5`1
4

; cos 72˝ “
?
5´1
4

(drop perpendiculars from D to AB and
from X to BC; or use the Cosine Rule).

(viii) Use sin2 36˝ ` cos2 36˝ “ 1: sin 36˝ “

?
10´2

?
5

4
; sin 72˝ “

?
10`2

?
5

4
.

Note: The Golden Ratio crops up in many unexpected places (including the regular
pentagon, and the Fibonacci numbers). Unfortunately much that is written about
its ubiquity is pure invention. One of the better popular treatments, that highlights
the number’s significance, while taking a sober view of spurious claims, is the book
The Golden Ratio by Mario Livio.

4.

(a) 12 345 “ 5ˆ 2469 “ 3ˆ 5ˆ 823. But is 823 a prime number?

It is easy to check that 823 is not divisible by 2, or 3, or 5, or 7, or 11. The
Square Root Test (displayed below) tells us that it is only necessary to check
four more potential prime factors.
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Square Root Test: If N “ aˆ b with a ď b, then aˆ a ď aˆ b “ N ,
so the smaller factor a ď

?
N .

Hence, if N (“ 823 say) is not prime, its smallest factor ą 1 is at most equal to?
N (“

?
823 ă 29). Checking a “ 13, 17, 19, 23 shows that the required prime

factorisation is 12 345 “ 3ˆ 5ˆ 823.

(b) There are 25 (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97).

Notes:

(i) For small primes, mental arithmetic should suffice. But one should also be
aware of the general Sieve of Eratosthenes (a Greek polymath from the 3rd

century BC). Start with the integers 1–100 arranged in ten columns, and
proceed as follows:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Delete 1 (which is not a prime: see (ii) below).

Circle the first undeleted integer; remove all other multiples of 2.

Circle the first undeleted integer; remove all other multiples of 3.

Circle the first undeleted integer; remove all other multiples of 5.

Circle the first undeleted integer; remove all other multiples of 7.

All remaining undeleted integers ă 100 must be prime (by the Square Root
Test (see part (a)).

(ii) The multiplicative structure of integers is surprisingly subtle. The first thing
to notice is that 1 has a special role, in that it is the multiplicative identity:
for each integer n, we have 1 ˆ n “ n. Hence 1 is “multiplicatively neutral”
– it has no effect.

The “multiplicative building blocks” for integers are the prime numbers: every
integer ą 1 can be broken down, or factorised as a product of prime numbers,
in exactly one way. The integer 1 has no proper factors, and has no role to
play in breaking down larger integers by factorisation. So 1 is not a prime.

(If we made the mistake of counting 1 as a prime number, then we would have
to make all sorts of silly exceptions – for example, to allow for the fact that
2 “ 2ˆ 1 “ 2ˆ 1ˆ 1 “ . . . , so 2 could then be factorised in infinitely many
ways.)

(iii) Notice that 91 = 7 ˆ 13 is not a prime; so there is exactly one prime in the
90s – namely 97.

How many primes are there in the next run of 10 (from 100–109)?

How many primes are there from 190–199? How many from 200–210?
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(c)(i) 3 “ 22
´ 1.

(ii) Many students struggle with this, and may suggest 143, or 323, or even 63.

The problem conceals a (very thinly) disguised message:

One cannot calculate with words.

To make use of mathematics, we must routinely translate words into symbols.

As soon as “one less than a square” is translated into symbols, bells should
begin to ring. For you know that x2 ´ 1 “ px´ 1qpx` 1q, so x2 ´ 1 can only
be prime if the smaller factor (x´ 1) is equal to 1.

5.

(a)(i) If we try to avoid such a “relatively prime pair”, then we must not choose
any of 11, 13, 17, 19 (since they are prime, and have no multiples in the given
range). So we are forced to choose the other six integers: 10, 12, 14, 15, 16,
18 – and there are then exactly two pairs which are relatively prime, namely
14, 15 and 15, 16.

(ii) If we try to avoid such a pair, then we can choose at most one even integer.
So we are then forced to choose all five available odd integers, and our list
will be: “unknown even, 11, 13, 15, 17, 19”. If the even integer is chosen to
be 14, or 16, then every pair in my list has LCM = 1. So the answer is “No”.

(b)(i) If we try to avoid such a pair, then we must not choose 97 (the only prime
number in the nineties). And we must not choose 95 “ 5 ˆ 19 (which is
relatively prime to all other integers in the given range – except for 90); and
we must not choose 91 “ 7ˆ13 (which is relatively prime to all other integers
in the given range – except for 98). So we are forced to choose six integers
from 90, 92, 93, 94, 96, 98, 99. Whichever integer we then omit leaves a pair
which is relatively prime.

(ii) If we try to avoid such a pair, then we can choose at most one even integer.
So we are then forced to choose all five available odd integers, and our list
will be: “unknown even, 91, 93, 95, 97, 99”, and so must include the pair 93,
99 – with common factor 3. So the answer is “Yes”.

(c) In parts (a) and (b), the possible integers are limited (in (a) to the “teens”, and
in (b) to the “nineties”); so it is natural to reach for ad hoc arguments as we
did above. But in part (c) you know nothing about the numbers chosen.

Note: The question says that “I choose”, and asks whether “you” can be sure.
So you have to find either a general argument that works for any n, or a
counterexample. And the theme of this chapter indicates that it should not require
any extended calculation.

The relevant “general idea” is the Pigeon Hole Principle which we may meet in
the second part of this collection. So this problem may be viewed as a gentle
introduction.

(i) Group the 2n consecutive integers

a` 1, a` 2, . . . , a` 2n
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into n pairs of consecutive integers

ta` 1, a` 2u, ta` 3, a` 4u, . . . , ta` p2n´ 1q, a` 2nu.

– If we choose at most one integer from each pair, then we never get more than
n integers.

– So as soon as we choose n ` 1 integers from 2n consecutive integers, we
are forced to choose both integers in some pair k, k ` 1, and this pair of
consecutive integers is always relatively prime (see Problem 6(b)(i)).

(ii) We saw in part (a)(ii) that, if n “ 5 and the 2n integers start at 10, then we can
choose six integers (either 11, 13, 14, 15, 17, 19, or 11, 13, 15, 16, 17, 19), and
in each case every pair has LCM = 1. So for n “ 5 the answer is “No” (because
there is at least one case where one cannot be sure).

However, as soon as n is at least 6, we show that the argument in part (a)(ii)
breaks down. As before, if we try to choose a subset in which no pair has a
common factor, then we can choose at most one even integer. So we are forced
to choose all the odd integers. But any run of at least six consecutive odd
integers includes two multiples of 3. So for n ě 6, the answer is “Yes”.

6.

(a)(i) Suppose k is a factor of m and n. Then we can write m “ kp and n “ kq for
some integers p, q. Hence m ´ n “ kpp ´ qq, so k is a factor of m ´ n. Also
m` n “ kpp` qq, so k is a factor of m` n.

(ii) Any factor of m and n is also a factor of their difference m ´ n; so the set
of common factors of m and n is a subset of the set of common factors of
m´ n and n.

And any factor of m ´ n and n is also a factor of their sum m; so the set of
common factors of m´ n and n is a subset of the set of common factors of
m and n.

Hence the two sets of common factors are identical. In particular, the two
“highest common factors” are equal.

(iii) Subtract 91 from 1001 ten times to see that

HCF p1001, 91q “ HCF p1001´ 910, 91q “ 91.

(b)(i) Subtract m from m` 1 once to see that

HCF pm` 1,mq “ HCF p1,mq “ 1.

(ii) Subtract m from 2m` 1 twice to see that

HCF p2m` 1,mq “ HCF pm` 1,mq “ HCF p1,mq “ 1.

(iii) Subtract m´ 1 from m2
` 1 “m` 1 times” to see that

HCF pm2
` 1,m´ 1q “ HCF ppm2

` 1q´ pm2
´ 1q,m´ 1q “ HCF p2,m´ 1q.

Hence, if m is odd, the HCF “ 2; if m is even, the HCF “ 1.
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7. They are equal. (The first is

17

100
ˆ 19 000 000,

the second is
19

100
ˆ 17 000 000,

which are equal since multiplication is commutative and associative.)

8.

(a)
3

2
ˆ

4

3
ˆ

5

4
ˆ

6

5
“

6

2
“ 3

(b)
c

3

2
ˆ

4

3
ˆ

5

4
ˆ

6

5
ˆ

7

6
ˆ

8

7
“

c

8

2
“ 2

(c)

10ˆ 9ˆ 8ˆ 7ˆˆ5ˆ 4ˆ 3ˆ 2ˆ 1 seconds

“
10ˆ 9ˆ 8ˆ 7ˆ 6ˆ 5ˆ 4ˆ 3ˆ 2ˆ 1

60
minutes

“
10ˆ 9ˆ 8ˆ 7ˆ 6ˆ 5ˆ 4ˆ 3ˆ 2ˆ 1

60ˆ 60
hours

“
10ˆ 9ˆ 8ˆ 7ˆ 6ˆ 5ˆ 4ˆ 3ˆ 2ˆ 1

60ˆ 60ˆ 24
days

“
10ˆ 9ˆ 8ˆ 7ˆ 6ˆ 5ˆ 4ˆ 3ˆ 2ˆ 1

60ˆ 60ˆ 24ˆ 7
weeks

“ 6 weeks (after cancelling).

Note: These three questions underline what we mean by structural arithmetic.
Fractions should never be handled by evaluating numerators and denominators.
Instead one should always be on the lookout for structural features which simplify
calculation – such as cancellation.

9.

(a) Suppose a rectangle in the “DIN A” series has dimensions a by b, with a ă b.

Folding in half produces a rectangle of size b
2

by a. Hence b : a “ a : b
2
, so

b2 “ 2a2, and b : a “
?

2 : 1.

(b) (i) 1
r
. (ii) r.

10.
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(a) “15% discount” means the price actually charged is “85% of the marked price”.
Hence each marked price needs to be multiplied by 0.85.

The distributive law says we may add the marked prices first and then multiply
the total (exactly £80) by 0.85 to get

£

ˆ

85

100
ˆ 80

˙

“ £p17ˆ 4q “ £68.

Note: The context (shopping, sales tax, and discount) is mathematically
uninteresting. What matters here is the underlying multiplicative structure of
the solution, which arises in many different contexts.

(b) “Add 20% VAT” means multiplying the discounted pre-VAT total (£68) by 1.2,
or 6

5
. Hence the final price, with VAT added, is £p1.2ˆ 0.85ˆ 80q.

If the VAT were added first, the price before discount would be £p1.2ˆ80q, and
the final price after allowing for the discount would be £p0.85ˆ 1.2ˆ 80q.

Since multiplication is commutative, the two calculations have the same result,
so the order does not matter (just as the final result in Problem 9 is the same
whether one first enlarges A4 to A3 and then reduces A3 to A4, or first reduces
A4 to A5 and then enlarges A5 to A4).

Note: Notice that we did not evaluate the two answers to see that they gave
the same output £81.60. If we had, then the equality might have been a fluke
due to the particular numbers chosen. Instead we left the answer unevaluated, in
structured form, which showed that the equality would hold for any input.

(c) To cancel out multiplying by 6
5

we need to multiply by 5
6

– a discount of 1
6
, or

16 2
3
%.

Note: This question has nothing to do with financial applications. It is included
to underline the fact that although percentage change questions use the language
of addition and subtraction (“increase”, or “decrease”), the mathematics suggests
they should be handled multiplicatively.

11.

(a)(i) 2ˆ 5 ă 3ˆ 4, so
7

2ˆ 5
ą

7

3ˆ 4
.

Hence
1

2
`

1

5
ą

1

3
`

1

4
.

(ii) At first sight, “10 ă 12” may not seem related to “ 1
2
` 1

5
ą 1

3
` 1

4
”. Yet the

crucial fact we started from in part (i) was “2ˆ 5 “ 10 ă 12 “ 3ˆ 4”.

(b) 10 ă 12, so

px` 2qpx` 5q “ x2 ` 7x` 10 ă x2 ` 7x` 12 “ px` 3qpx` 4q.
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(i) If all four brackets are positive (i.e. if x ą ´2), then we also have 2x` 7 ą 0,
and it follows that

1

x` 2
`

1

x` 5
“

2x` 7

px` 2qpx` 5q

ą
2x` 7

px` 3qpx` 4q

“
1

x` 3
`

1

x` 4
.

(ii) When calculating with the given algebraic expression, the values

x “ ´2,´3,´4,´5

are “forbidden values”.

If x ą ´2, then (as in part (i)) we have

1

x` 2
`

1

x` 5
“

2x` 7

px` 2qpx` 5q

ą
2x` 7

px` 3qpx` 4q

“
1

x` 3
`

1

x` 4
.

For permitted values of x ă ´2, one or more of the brackets px` 2q, px` 5q,
px` 3q, px` 4q will be negative. However, one can still carry out the algebra
to simplify

1

x` 2
`

1

x` 5
“

2x` 7

px` 2qpx` 5q
and

1

x` 3
`

1

x` 4
“

2x` 7

px` 3qpx` 4q

When x “ ´ 7
2

both expressions are equal, and equal to 0. The simplified
numerators are both positive if x ą ´ 7

2
, and both negative if x ă ´ 7

2
; and

the sign of the denominators changes as one moves through the four intervals
´3 ă x ă ´2, ´4 ă x ă ´3, ´5 ă x ă ´4, x ă ´5, with the inequality
switching

from “ ą ” (for x ą ´2) to “ ă ” (for ´3 ă x ă ´2),
to “ ą ” (for ´3.5 ă x ă ´3),
to “ ă ” (for ´4 ă x ă ´3.5),
to “ ą ” (for ´5 ă x ă ´4),
to “ ă ” (for x ă ´5).

12.

(a) (i) 3` 2
?

2; (ii) 3´ 2
?

2; (iii) 7` 5
?

2.



1.8. Chapter 1: Comments and solutions 37

Note: Notice that you can write down the answer to (ii) as soon as you have
finished (i), without doing any further calculation.

(b) (i) 2 `
?

6; (ii)
?

2 `
?

3; (iii) 1`
?
5

2
(the Golden Ratio 1`

?
5

2
“ τ is the larger

root of the quadratic equation x2 ´ x´ 1 “ 0. Hence 3`
?
5

2
“ τ ` 1 “ τ2);

(iv)
a

10´ 2
?

5: this does not simplify further.

Note: Some readers may think an apology is in order for part (iv). The lesson
here is that, while one should always try to simplify, there is no way of knowing
in advance whether a simplification is possible. And there is no way out of this
dilemma. So one is reduced to thinking: any simplification would involve

?
5, and

if one tries to solve pa` b
?

5q2 “ 10´ 2
?

5, then the solutions for a and b do not
lead to anything “simpler”. (This repeated surd should perhaps have rung bells, as
it was equal to the exact expression for 4 sin 36˝ in Problem 3(c). It was included
here partly because the question of its simplification should already have arisen
when it featured in that context.)

13. In reconstructing the missing digits the number of possible solutions is
determined by the highest common factor of the multiplier and 10. At the first
step (in the units column):

because HCF p6, 10q “ 2, lˆ 6 “ 8 pmod 10q has two solutions which
differ by 5 – namely 3 and 8.

The first possibility then requires us to solve pl ˆ 3q ` 1 “ 2 pmod 10q: because
HCF p3, 10q “ 1, this has just one solution – namely 7. This gives rise to the
solution 76ˆ 3 “ 228.

The second possibility requires us to solve pl ˆ 8q ` 4 “ 2 pmod 10q: because
HCF p8, 10q “ 2, this has two solutions which differ by 5 – namely 1 and 6. This
gives rise to two further solutions: 16ˆ 8 “ 128, and 66ˆ 8 “ 528.

14.

(a) The solutions are entirely elementary, with no trickery. But they can be
surprisingly elusive. And since this elusiveness is the only reason for including
the problem, we hesitate to relieve any frustration by giving the solution.

The whole thrust of the “24 game” is to underline the scope for “getting to know”
the many faces of a number like 24: for example, as 24 “ 12`12 (“ 3ˆ4`3ˆ4
for 3, 3, 4, 4); as 24 “ 25´ 1 (“ 5ˆ 5´ 3˜ 3 for 3, 3, 5, 5); and as 24 “ 27´ 3
(“ 3ˆ 3ˆ 3´ 3 for 3, 3, 3, 3). So one should be looking for ways of exploiting
other important arithmetical aspects of 24 – in particular, as 4ˆ 6 and as 3ˆ 8.

(b)(i) 0 “ p4´4q`p4´4q; 1 “ p4˜4qˆp4˜4q; 2 “ p4˜4q`p4˜4q; 3 “ p4`4`4q˜4;
4 “ pp4´4qˆ4q`4; 5 “ pp4ˆ4q`4q˜4; 6 “ 4`pp4`4q˜4q; 7 “ 4`4´p4˜4q;
8 = p4`4qˆp4˜4q; 9 “ p4`4q`p4˜4q. The output 10 seems to be impossible
with the given restrictions.

(ii) With squaring and
?

allowed we can manage 10 “ 4` 4` 4´
?

4. Indeed,
one can make everything up to 40 except (perhaps) 39.
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15.

(a)(i) a2 ` 2ab` b2; a3 ` 3a2b` 3ab2 ` b3

(ii) Replace b by p´bq: a2 ´ 2ab` b2; a3 ´ 3a2b` 3ab2 ´ b3

(b) (i) px` 1q2; (ii) px2 ´ 1q2; (iii) px2 ´ 1q3

(c) (i) a2 ´ b2

(ii) Replace “b” by “b` c”: a2 ´ pb` cq2 “ a2 ´ b2 ´ c2 ´ 2bc

Replace “b” by “b´ c”: a2 ´ pb´ cq2 “ a2 ´ b2 ´ c2 ` 2bc

(d) One way is to rewrite this expression as a difference of two squares:

p2xq2 ´ px2 ´ 2x` 1q “ p2xq2 ´ px´ 1q2

“ p2x´ px´ 1qqp2x` px´ 1qq

“ px` 1qp3x´ 1q

Note: As so often, the messages here are largely implicit. In part (a)(ii) we
explicitly highlight the intention to use what you already know (by simply
substituting “´b” in place of “b”. In part (b), you are expected to recognise
(i), and then to see (ii) and (iii) as mild variations on the expansions of pa ´ bq2

and pa´ bq3 in part (a). Part (c) repeats (in silence) the message of (a)(ii): think
– don’t slog it out. And part (d) encourages you to keep an eye out for thinly
disguised instances of “a difference of two squares”.

16.

(a) Final digits: ‘block’ 4, 6 of length 2;

leading digits: “block” 4, 1, 6, 2, 1 of length 5.

(b) Claim The sequence of “units digits” really does recur.

Proof Given a power of 4 that has units digit 4, the usual multiplication
algorithm for multiplying by 4 produces a number with units digit 6.

Given this new power of 4 with units digit 6, the usual multiplication algorithm
for multiplying by 4 produces a number with units digit 4.

At this stage the sequence of units digits begins a new cycle.

[Alternatively: The units digit is simply equal to the relevant power of 4
pmod 10q. Multiplying by 4 changes 4 to 6 pmod 10q; multiplying by 4 changes
6 to 4 pmod 10q; – and the cycle repeats.]

(c) The sequence of leading digits seems to recur every 5 terms, because 45
“

210
“ 1024 is almost exactly equal to 1000. Each time we move on 5 steps in the

sequence, we multiply by 45
“ 1024. As far as the leading digit is concerned,

this has the same effect as multiplying the initial term (4) by slightly more than
1.024 (then adding any ‘carries’), which is very like multiplying by 1 – and so
does not change the leading digit (yet).

However, each time we move on 10 steps in the sequence, we multiply by 410
“

10242
“ 1 048 576. As far as the leading digit is concerned, this has the same

effect as multiplying by slightly more than 1.048576.
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When we move on 25 steps, we multiply by 425
“ 1 125 899 906 842 624. And as

far as the leading digit is concerned, this has the same effect as multiplying by
slightly more than 1.12599906842624. And so on.

Eventually, the multiplier becomes large enough to change one of the leading
digits.

17. The total is 100.

Having found this by direct calculation, we should think indirectly and notice that
100 “ 102.

And we should then ask: “Why 10? What has 10 got to do with the 4ˆ
multiplication table?”

A quick check of the 1ˆ multiplication table (total “ 1), the 2ˆ multiplication
table (total “ 9), etc. may suggest what we should have seen immediately.

The first row has sum: p1` 2` 3` 4q.

The second row has total 2ˆ p1` 2` 3` 4q.

The third row has total 3ˆ p1` 2` 3` 4q.

The fourth row has total 4ˆ p1` 2` 3` 4q.

6 The total is p1` 2` 3` 4q ˆ p1` 2` 3` 4q “ p1` 2` 3` 4q2.

19.

(a) sin 45˝ “ 1?
2
“
?
2
2
“ cos 45˝; tan 45˝ “ 1

(b) AM “
?

3; sin 30˝ “ 1
2
, cos 30˝ “

?
3
2

, tan 30˝ “ 1?
3
“

?
3
3

; sin 60˝ “
?
3
2

,

cos 60˝ “ 1
2
, tan 60˝ “

?
3.

(c) (iii) cos 315˝ “ cos 45˝ “
?
2
2

; sin 225˝ “ ´ sin 45˝ “ ´
?
2
2

; tan 210˝ “ tan 30˝ “
?
3
3

; cos 120˝ “ ´ cos 60˝ “ ´ 1
2
; sin 960˝ “ sin 240˝ “ ´ sin 60˝ “ ´

?
3
2

;
tanp´135˝q “ tan 45˝ “ 1.

(d) Cut the n-gon into n “cake slices”, and use the formula “ 1
2
ab sinC” for each

slice.

(i) 3
?
3

4
; (ii) 2; (iii) 3

?
3

2
; (iv) 2

?
2; (v) 3

(e) Work out the side length of the n-gon, then cut the n-gon into n “slices”, and
use the formula “ 1

2
pbaseˆ height)” for each slice.

(i) 3
?

3; (ii) 4; (iii) 2
?

3; (iv) 8p
?

2´ 1q; (v) 12p2´
?

3q

Note: There is no hidden trig here: all you need is Pythagoras’ Theorem. For
example, in part (e)(iv) we can extend alternate sides of the regular octagon to
form the circumscribed 2 by 2 square. The four corner triangles are isosceles right
angled triangles with hypotenuse of length s (the side of the octagon). Hence each
side of the square is equal to s` 2 ¨ s?

2
“ 2, whence s “ 2p

?
2´ 1q.
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20. (a)
?

8; (b)
?

2,
?

2; (c)
?

8 “
?

4ˆ 2 “ 2
?

2

21. Construct the perpendicular from A to BC (possibly extended); let this meet
the line BC at X. There are four possibilities:

(i) either X “ C, in which case =BCA is a right angle as required; or X “ B, in
which case b2 “ a2 ` c2, contradicting a2 ` b2 “ c2;

(ii) X ‰ B,C, and C lies between B and X;

(iii) X ‰ B,C, and X lies between B and C;

(iv) X ‰ B,C, and B lies between X and C.

We analyse case (ii) and leave cases (iii) and (iv) to the reader.

(ii)4AXC and4AXB are both right angled triangles; so by Pythagoras’ Theorem
we know that

AC2
“ AX2

`XC2, and

AB2
“ AX2

`XB2

“ AX2
` pXC ` CBq2

“ AX2
`XC2

` CB2
` 2XC ¨ CB

“ AC2
` CB2

` 2XC ¨ CB.

Since we are told that AC2
`CB2

“ AB2, it follows that 2XC ¨CB “ 0, contrary
to X ‰ C.

Note: Notice that the proof of the converse of Pythagoras’ Theorem makes use of
Pythagoras’ Theorem itself.

22.

(a) c “ b`1, so a2 “ c2´b2 “ 2b`1. Hence a is odd, and we can write a “ 2m`1.

(b) Suppose b “ 2n ´ 1 is also odd. Then c2 “ 4n2 is divisible by 4 – which
contradicts the fact that b2 “ 4pn2

´nq` 1, and a2 “ 4pm2
`mq` 1, so a2` b2

leaves remainder 2 on division by 4.

Hence b “ 2n is even and c “ 2n` 1 is odd. But then

p2m` 1q2 ` p2nq2 “ a2 ` b2 “ c2 “ p2n` 1q2,

so 4pm2
`mq “ 4n, and n “ mpm` 1q.

23.

(a) If a and b are both even, then HCF pa, bq ‰ 1, so the triple would not be
primitive.
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If a and b are both odd, we use the idea from Problem 22(b). Suppose a “
2m ` 1, b “ 2n ` 1; then a2 “ 4pm2

` mq ` 1, and b2 “ 4pn2
` nq ` 1, so

a2 ` b2 “ 2ˆ p2pm2
`m` n2

` nq ` 1q. But this is “twice an odd number”, so
cannot be equal to c2 (since c would have to be even, and any even square must
be a multiple of 4).

Hence we may assume that a is odd and b is even: so c is is odd.

(b) Then a2 ` b2 “ c2 yields b2 “ c2 ´ a2 “ pc´ aqpc` aq, so

ˆ

b

2

˙2

“

´c´ a

2

¯´ c` a

2

¯

.

Any common factor of c`a
2

and c´a
2

divides their sum c and their difference a,
so HCF p c´a

2
, c`a

2
q “ 1. Since the difference of these two factors is a, which is

odd, they have opposite parity.

(c) If two integers are relatively prime, and their product is a square, then each
of the factors has to be a square (consider their prime factorisations). Hence
c`a
2
“ p2 and c´a

2
“ q2, where HCF pp, qq “ 1 and p and q have opposite parity.

Therefore
c “ p2 ` q2, a “ p2 ´ q2, b “ 2pq.

(d) It is easy to check that any triple of the given form is (i) primitive, and (ii)
satisfies a2 ` b2 “ c2.

24. Claim The only such triples are those of the form p3s, 4s, 5sq.

Proof We show that the only primitive Pythagorean triple which forms an
arithmetic progression is the familiar triple p3, 4, 5).

By Problem 23, one of the numbers in any primitive Pythagorean triple is even
(namely 2pq) and two are odd (p and q are of opposite parity, so p2´q2 and p2`q2

are both odd).

6 2pq is the “middle term”, and the smallest and largest terms differ by 2q2.

6 the common difference d “ c´ b “ b´ a is equal to q2.

6 2pq “ p2, so p “ 2q.

Finally, since p and q are relatively prime, we must have q “ 1, p “ 2. QED

Note: Alternatively, let pa, b, cq be any Pythagorean triple (not necessarily
primitive), which forms an arithmetic progression. Then

a2 “ c2 ´ b2 “ pc´ bqpc` bq “ pb´ aqpc` bq.

So bpc ` bq “ apa ` b ` cq. Hence a ¨ 3b “ apa ` b ` cq “ bpc ` bq. It then follows
that 3b2 “ bpa` b` cq “ 4ba, so 3b “ 4a and a : b “ 3 : 4.
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25.

(a) 2 “ 12
` 12, 5 “ 22

` 12, 13 “ 32
` 22, 17 “ 42

` 12, 29 “ 52
` 22, 37 “ 62

` 12,
41 “ 52

`42, 53 “ 72
`22, 61 “ 62

`52, 73 “ 82
`32, 89 “ 82

`52, 97 “ 92
`42.

(b) pa2 ` b2qpc2 ` d2q “ pac´ bdq2 ` pad` bcq2.

Note: It is easy to check this identity once it is given, but most of us are not so
fluent in algebra as to spot this handy identity without help! However, Chapter
1 is about “Mental skills”, and one such technique (once you have mastered it)
arises from the arithmetic of complex numbers. If you have met complex numbers,
then this identity can be written down immediately. Let us explain briefly how.

Every complex number w “ a` bi (where i2 “ ´1) can be represented as a point
in the complex plane with coordinates pa, bq. The “size”, or modulus, of w is its
length |w| (the distance of pa, bq from the origin p0, 0q); and the square of this
length a2 ` b2 is referred to as the norm of the complex number w “ a` bi. The
required identity is an immediate consequence of the two facts:

• the modulus of a product is equal to the product of the two moduli: |wz| “
|w| ¨ |z|, and

• the norm a2 ` b2 can be expressed algebraically as a2 ` b2 “ pa` biqpa´ biq.

Once we know these facts:

• a2 ` b2 can be interpreted as the norm of w “ a` bi, and

• c2 ` d2 as the norm of z “ c` di;

the product of the two norms pa2 ` b2qpc2 ` d2q is then equal to the norm of the
product w ¨ z “ pac´ bdq ` pad` bcqi.

Note: If we choose z “ c ´ di, then wz “ pac ` bdq ` pbc ´ adqi, and we get a
second identity: pa2 ` b2qpc2 ` d2q “ pac` bdq2 ` pbc´ adq2.

(c) The square p2nq2 of any even number 2n is a multiple of 22
“ 4.

Any odd number has the form 2n` 1; its square p2n` 1q2 “ 4n2
` 4n` 1 is 1

more than a multiple of 4. So in the sum of two squares, we have

(i) both squares are even and their sum is a multiple of 4, or

(ii) one square is even and one is odd and their sum is of the form 4k ` 1, or

(iii) both squares are odd and their sum is of the form 4k ` 2.

Hence no number of the form 4k ` 3 can be written as a sum of two squares.

(d) We are told that 2 “ 12
` 12, and that Euler showed every prime of the form

4k ` 1 can be written as the sum of two squares. Part (b) then shows that any
product of such primes can be written as the sum of two squares. And if we
multiply a sum of two squares by a square, the result can again be written as
the sum of two squares. This allows us to construct the list of forty six integers
N ă 100 which can be so written. These are precisely the integers of the form
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“(a square)ˆ (a product of distinct primes p, where p “ 2 or p “ 4k`1)”:

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41,
45, 49, 50, 52, 53, 58, 60, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 83, 85,
87, 89, 90, 97, 98.

(e) The side of such a square is the hypotenuse of a right angled triangle whose legs
run in the x- and y- directions, and have integer lengths (because their vertices
are at points with integer coordinates). Hence the answer is exactly the same
as for part (d) (provided one does not quibble about the idea of a square with
side 0 and area 0).

26. Most sheets in a newspaper are double sheets with four pages. If we assume
that all sheets are double sheets, then the 13 pages before page 14 match up with
the 13 pages after page 27, so there are 27 ` 13 “ 40 pages in all. (If the paper
included inserted ‘single sheets’ – with just two pages, then there is no solution.)

27.

(a) If θ “ 90˝, then the overlap is clearly one quarter of the small square. In
general, the continuations of the sides BA and DA cut the small square into
four congruent quadrilaterals, one of which is the area of overlap. So the overlap
is always one quarter of the lower square.

(b) The area of overlap for “a large equilateral 4ABC on top of a small equilateral
4PQR” is not constant, but depends on the angle of orientation of the large
triangle. However, if viewed in the right way, something similar works for a
large regular 2n-gon on top of a small regular 2n-gon with one corner of the
large polygon at the centre of the small one.

The key is to realise how the fraction “one quarter” arises for a regular 4-gon.

There 2n “ 4, so n “ 2, and each vertex angle is equal to
´

360˝

2n

¯

pn´ 1q “ 90˝,

which is exactly n´1
2n

“ 1
4

of 360˝. For a regular 2n-gon, the large polygon always
covers a fraction equal to exactly n´1

2n
of the small polygon.

28. 3 cm, the same as the perimeter of triangle ABC.2

What if A were folded to some point A2 on BC?

29. In extremis one may reach for trigonometry: if we denote the three angles by
α (at A), β (at B), and γ (at C), then the arrangement of squares implies that
tanα “ 1

3
, tanβ “ 1

2
, and tan γ “ 1, so we can use the standard identity

tanpα` βq “
tanα` tanβ

1´ tanα tanβ

to see that tanpα` βq “ 1 “ tan γ.

2 From: Y. Wu, The examination system in China: the case of zhongkao mathematics.
12th International Congress on Mathematical Education. 8 July – 15 July, 2012, COEX,
Seoul, Korea
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However, it is worth looking for a more elementary explanation than ‘brute force
calculation’. If we embed the horizontal 3 by 1 rectangle ADEH in the top right
hand corner of a 4 by 4 square ZDXY , (with Z labelling the top left hand corner),
then we can complete the square AEPQ, which has AE as one side, with P on
side XY and Q on side Y Z.

Then =AEH “ =DAE, and =AEQ “ =DCE. So all we need to explain is why
=HEQ “ =DBE – and this follows from the fact that EQ passes through the
centre of the 4 by 4 square ZDXY .

30.

(a) Construct points P and Q inside the trapezium so that MNPQ is similar to
BCMN . If the line through P parallel to AB meets BC at X, and the line
through Q parallel to AC meets BC at Y , then MNPQ, NBXP , XYQP ,
MCYQ are the required pieces.

(b) Each of the four pieces must be three-quarters of one of the small squares. So
we have to lose one quarter of each small square. There are various ways to
do this, but most create non-congruent parts. Cut each of the smaller squares
into quarters as for the original square. If O is the centre of the original square,
lump together the three mini-squares which have O as a vertex to form an
L-shape. Each of the three remaining small squares has lost a quarter and forms
an identical L-shape.

31. To divide the shaded region in 2 congruent parts, rotate the lower small
semicircle through the angle π

2
anticlockwise about the centre of the large circle.

Note: The same idea allows one to divide the shaded region into n congruent parts:
rotate the lower small semicircle successively through the angle π

n
anticlockwise

about the centre of the large circle.3

32.

(a) The point O lies on the perpendicular bisector of AB, and so is equidistant
from the two endpoints A and B, so OA “ OB. The point O also lies on the
perpendicular bisector of BC, and so is equidistant from the two endpoints B
and C, so OB “ OC.

(b) (ii) =BA1C and =BAC are angles subtended in the same segment of the circle
by the same chord BC, so are equal (“angles in the same segment”).

=A1CB is the angle subtended on the circumference (at C) by the diameter
A1B, and so must be a right angle. In 4A1BC we then see that

sinA “ sinA1 “
a

2R
.

If we now switch attention from the angle at A to the angle at B, and then to
the angle at C, we can show that sinB “ b

2R
, and that sinC “ c

2R
.

3 From: Introductory Assignment, Gelfand Correspondence Program in Mathematics.
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33.

(a) Drop a perpendicular from A to meet the line BC at X. Then AX “ b ¨ sinC,
so

∆ “
1

2
¨ paˆ b sinCq.

(b) Substitute “sinC “ c
2R

” (from the Sine Rule) into the formula in part (a).

34.

(a)(i) α
2π

; α
2π
ˆ psurface area of unit sphere “ 4πq “ 2α.

(ii) 4α

(b) (i) 4β; (ii) 4γ

(c)(i) 4pα` β ` γq

(ii) Triangle ABC and its sister triangle A1B1C 1 are congruent, and each is covered
3 times.

(iii)

4pα` β ` γq “ ptotal surface area of the unit sphereq

`p4ˆ parea of the spherical triangle ABCqq

6 areap4ABCq “ pα` β ` γq ´ π.

Note: In particular, the formula for the area of a spherical triangle implies:

• the angle sum α ` β ` γ in any spherical triangle is always greater than π,
and

• the larger the triangle ABC, the more its angle sum must exceed π.

35.

(a)

cospA`Bq ` i sinpA`Bq “ eipA`Bq

“ eiA ¨ eiB

“ pcosA` i sinAqpcosB ` i sinBq.

Hence
sinpA`Bq “ sinA cosB ` cosA sinB,

and
cospA`Bq “ cosA cosB ´ sinA sinB.

To reconstruct tanpA ` Bq, divide these two expressions, and then divide
numerator and denominator by “cosA cosB” to get

tanpA`Bq “
sinpA`Bq

cospA`Bq
“

tanA` tanB

1´ tanA tanB
.
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(b)

sinX “ sinpA`Bq

“ sinA cosB ` cosA sinB

“ sin

ˆ

X ` Y

2

˙

cos

ˆ

X ´ Y

2

˙

` cos

ˆ

X ` Y

2

˙

sin

ˆ

X ´ Y

2

˙

,

and

sinY “ sinpA´Bq

“ sinA cosB ´ cosA sinB

“ sin

ˆ

X ` Y

2

˙

cos

ˆ

X ´ Y

2

˙

´ cos

ˆ

X ` Y

2

˙

sin

ˆ

X ´ Y

2

˙

,

6 sinX ` sinY “ 2 sin

ˆ

X ` Y

2

˙

cos

ˆ

X ´ Y

2

˙

.

For sinX ´ sinY , substitute “´Y ” in place of Y to get:

sinX ´ sinY “ 2 sin

ˆ

X ´ Y

2

˙

cos

ˆ

X ` Y

2

˙

.

Similarly

cosX ` cosY “ cospA`Bq ` cospA´Bq

“ pcosA cosB ´ sinA sinBq ` pcosA cosB ` sinA sinBq

“ 2 cosA cosB

“ 2 cos

ˆ

X ` Y

2

˙

cos

ˆ

X ´ Y

2

˙

cosX ´ cosY “ cospA`Bq ´ cospA´Bq

“ pcosA cosB ´ sinA sinBq ´ pcosA cosB ` sinA sinBq

“ ´2 sinA sinB

“ ´2 sin

ˆ

X ` Y

2

˙

sin

ˆ

X ´ Y

2

˙

.

(c)(i) sinpA`Bq “ sin 90˝ “ 1;

sinA cosB ` cosA sinB “

ˆ

1

2

˙2

`

ˆ
?

3

2

˙2

“ 1.

(ii) cosX ´ cosY “ 1
2
´ 1 “ ´ 1

2
;

´2 sin

ˆ

X ` Y

2

˙

sin

ˆ

X ´ Y

2

˙

“ ´2 sin2 30˝ “ ´
1

2
.



1.8. Chapter 1: Comments and solutions 47

(d)(i) 2 sinA sinB “ cospA´Bq ´ cospA`Bq.

6 2 sinA sinB ` 2 sinC sinD

“ rcospA´Bq ´ cospA`Bqs

` rcospC ´Dq ´ cospC `Dqs

“ cospA´Bq ` cospC ´Dq

psince C `D “ π ´ pA`Bqq

“ 2 cos

ˆ

A` C ´ pB `Dq

2

˙

cos

ˆ

A`D ´ pB ` Cq

2

˙

“ 2 cos
´π

2
´ pB `Dq

¯

cos
´π

2
´ pB ` Cq

¯

“ 2 sinpB `Dq sinpB ` Cq.

Note: We can swap A and B without changing the expression “sinA sinB `
sinC sinD”. Hence the same should be true of the RHS “sinpB`Cq sinpB`Dq”.
Fortunately, since A`B `C `D “ π, we know that sinpA`Cq “ sinpB `Dq,
and sinpA`Dq “ sinpB ` Cq.

(ii) In triangle WXY we see that A`B ` C `D “ π. Hence

sinA sinB ` sinC sinD “ sinpA`Dq sinpB `Dq.

Now let R be the radius of the circle. Use “equality of angles in the same
segment” and the Sine Rule (in its full form: see Problem 32) to write:

2R sinA “ XY , 2R sinB “WZ, 2R sinC “ Y Z, 2R sinD “WX,

2R sinpA`Dq “WY , 2R sinpB `Dq “ XZ.

6 WX ˆ Y Z `WZ ˆXY “WY ˆXZ.

36. Yes.

Let the perpendicular bisectors of AB and BC meet at the point O.

Then OA “ OB and OB “ OC, so the circle with centre O passing through A
also goes through B and C.

We have to prove that this circle also passes through D, E, etc..

To do this we prove that 4OBC ” 4OCD.

We know that 4OAB ” 4OBC (by SSS-congruence: OA “ OB and OB “ OC
by the construction of O; and AB “ BC since both are sides of a regular n-gon).
Moreover

=OAB “ =OBA (base angles of the isosceles triangle 4OABq
“ =OCB (since 4OAB ” 4OBCq
“ =OBC (base angles of the isosceles triangle 4OBCq.

And =ABC “ =BCD (angles of the same regular n-gon).
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6 =OCD “ =BCD ´=OCB “ =ABC ´=OBA “ =OBC.

6 4OBC ” 4OCD (by the SAS-congruence criterion).

Hence OC “ OD.

Continuing in this way we can prove that OA = OD = OE, etc..

37.

(a) Yes. There are two nets for a regular tetrahedron. One of these consists of four
equilateral triangles in a row (alternately right side up and right side down).
In making the tetrahedron, the two sloping ends are glued together. So if we
cut half a triangle from one end and stick it on the other end, we get a 4 by?

3 rectangle which folds round the tetrahedron exactly without any gaps or
overlaps.

(b) The usual way to wrap a cube with edges of length 2 is to take a 4 by 8
rectangular piece of wrapping paper, to position the cube centrally on an edge
of length 4 (1 unit from each edge), and to wrap the paper to cover a circuit of
four faces. The overlapping residue can then be folded down to cover each side
face, with overlaps. Hence the ratio

“area of paper” : “surface area of cube” “ 8 : 6.

The same ‘wastage rate’ can be achieved with a square 4
?

2 by 4
?

2 piece of
paper. Position the cube centrally on the paper, but turned through an angle
of 45˝. Then fold the four corners of the paper up each of the four side faces
(with folds to tuck in four ‘wasted’ isosceles right angled triangles – one in the
middle of each edge of the paper, with total wasted area 8). Finally, the four
isosceles right angled triangles at the four corners of the paper can be folded in
to exactly cover the top face without further overlaps.

However, one can do significantly better if the paper can be folded back on itself.
Take a 2 by 14 rectangle, and think of this as being marked into seven 2 by 2
squares. Place the cube to cover the central 2 by 2 square – leaving three 2 by 2
squares sticking out each side. Fold one 2 by 6 strip up to cover the top square,
before folding back along a diagonal of the top square to reveal the inside of the
paper and to cover half of the top square twice before folding down to cover one
side square. Do the same with the other 2 by 6 strip, with the reverse fold along
the diagonal of the top square resulting in the other half of the top square being
covered twice, with the tail folding down to cover the other side square. Hence
the ratio

“area of paper” : “surface area of cube” “ 7 : 6.

(This lovely solution was provided by Julia Gog. We do not know whether one
can do better.)

38.

(i) Yes. (Cut off a corner A say with a plane passing through the three neighbours
of A.)

(ii) Yes. (Cut the cube parallel to a face.)
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(iii) No. (Any cross-section of the cube is a polygon. Each edge of this polygonal
cross-section is the line segment formed by the intersection of the cutting plane
with one of the faces of the cube. Since the cube has just six faces, the
cross-section can have at most six sides.)

(iv) Yes. (Let A and G be two opposite corners – so that AG passes through the
centre O of the cube. Then the plane through O which is perpendicular to AG
cuts the surface of the cube in a regular hexagon.)

(v) No. (It may not be clear how to prove this easily. It is perfectly possible to
obtain a pentagonal cross-section by cutting with a plane that misses exactly
one face. But if the cutting plane misses exactly one face, we can be sure that
it must cut both faces belonging to some “opposite pair”; and these two faces
are parallel, so the resulting edges of the cross-sectional pentagon are parallel.
Hence the pentagon can never be regular.)

39.

(i) No; (ii) Yes; (iii) No; (iv) Yes; (v) No.

The 12 edges of the cube come in three groups of four – namely the four parallel
edges in each of three directions.

Consider the four edges in one of these parallel groups. If the Sun’s rays are
parallel to these four edges, then each of these edges projects to a single vertex of
the outline of the shadow – which is a projection of a square.

In all other cases two of the four parallel edges in the group give rise to shadows
that form part of the boundary of the shadow polygon, while the other two edges
project to the inside of the shadow (and so do not feature in the boundary of the
shadow). Hence each of the three groups provides two edges to the boundary of
the shadow polygon, and we obtain a hexagon.

To obtain a regular hexagon, align the Sun’s rays parallel to the line AG joining two
opposite corners A and G of the cube, and position the shadow plane perpendicular
to this direction. The three edges at these two corners A and G then project to the
inside of the shadow, while the six remaining edges project to a regular hexagon.
(Since there are four body diagonals like AG, there are four ways to make such
a projection. In each case, the six edges of the cube that project to the regular
hexagon form a non-planar hexagon on the surface of the cube, that zig-zags its
way round the polyhedron like a ‘wobbly equator’, turning alternately left and
right each time it reaches a vertex. Such a closed circuit on a regular polyhedron
is called a Petrie polygon – named after John Flinders Petrie (1907–1972), son of
the famous Egyptologist Flinders Petrie).





II. Arithmetic

A child of the new generation
Refused to learn multiplication

He said, “Don’t conclude
That I’m stupid, or rude.

I am simply without motivation.”
Joel Henry Hildebrand (1881–1983)

Many important aspects of serious mathematics have their roots in the world
of arithmetic. This is a world everyone can enjoy and master. In this chapter
we re-visit, or maybe meet for the first time, key aspects of arithmetic that
are often overlooked – ending with an introduction to the basic result on the
distribution of primes.

The place of arithmetic in elementary mathematics can only be understood
if one realises that, from upper primary school onwards, mathematics should
no longer focus on more and more complicated calculations. Rather it moves
beyond a set of procedures for grinding out answers, and should become a
structural laboratory, where we gain insight into simple phenomena, and
where we begin to appreciate how calculation can be managed, or tamed.
The focus on structure leads in the main to matters which can be best
expressed algebraically. This chapter concentrates mainly on structural
aspects of number that are strictly arithmetical (e.g. related to numerals and
place value), or where the relevant structural approach is “pre-algebraic” –
with occasional forays into the world of algebra.

We repeat the observation that the “essence of mathematics” in the title
is mostly left implicit in the problems. And while there is some discussion
of this “essence” in the text between the problems, most of the relevant
observations that we make are to be found in the solutions, or in the Notes
which follow many of the solutions.

2.1. Place value and decimals: basic structure

Problem 40 Without using a calculator:

(a) Work out



52 Arithmetic

(i) 12 345 679ˆ 9

(ii) 7ˆ 9ˆ 11ˆ 13.

(b) Divide

(i) 123 123 123 by 123

(ii) 111 111 111 by 111

(iii) 111 111 111 by 37. 4

Problem 41 Work out in your head (i) 112 (ii) 113 (iii) 1012. 4

Problem 42 Try to answer the following questions using only mental
arithmetic:

(a)(i) What is the largest and the smallest possible number of digits in the
answer when you multiply a 3-digit integer by a 5-digit integer?

(ii) What if we multiply an m-digit integer by an n-digit integer?

(b)(i) How many (base 10) digits are there in the evaluated form of 220?

(ii) Estimate
`

1
2

˘20
to 6 decimal places.

(c) Can a natural number (i.e. a positive integer) be smaller than the product
of its (base 10) digits?

(d) Work out how many zeros there are on the end, and work out the last
non-zero digit of (i) 215 ˆ 53 (ii) 20!. 4

Problem 43 Imagine the sequence of positive integers from 1 to 60 written
in a single row as the digits of a very large integer:

1234567891011121314151617181920212223 ¨ ¨ ¨ 5960.

You have to cross out 100 of these digits.

(a) Suppose you want to make the remaining number as small as possible.
What number is left?

(b) Now suppose that you want to make the remaining number as large as
possible. What number is left? 4
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2.2. Order and factors

Problem 44 Find the remainder when we divide

1111 ¨ ¨ ¨ 1111 (with 1111 digits 1q

by 1111. 4

Problem 45 Which of the numbers

100 001

100 002
and

10 000 001

10 000 002

is bigger? 4

Problem 46 Show that the integer

100 000 000 003 000 000 000 000 700 000 000 021

is not prime. 4

Problem 47 How many prime numbers are there in each of these
sequences? (Can you identify infinitely many primes in either sequence?
Can you identify infinitely many non-primes?)

(a) 1, 11, 111, 1111, 11 111, 111 111, 1 111 111, . . .

(b) 11, 1001, 100 001, 10 000 001, . . . 4

2.3. Standard written algorithms

Problem 48 Use standard column arithmetic (i.e. long multiplication) to
evaluate 9009ˆ 37. Why should you have foreseen the outcome? 4
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Problem 49 In the long division shown here, all the digits are missing.

˚ ˚ ˚ ˚ ˚
—————

˚˚ | ˚ ˚ ˚ ˚ ˚ ˚ ˚
˚ ˚
—
˚ ˚ ˚
˚ ˚
—
˚ ˚
˚ ˚
—
˚ ˚ ˚
˚ ˚ ˚
——

But the “shape” of the constituent numbers is clear.

Can you work out all possibilities for the two-digit divisor? 4

Problem 50 (For those readers who can write simple computer code.) In
these problems you may choose your favourite programming language, and
a device of your choice.

(a) Two non-negative integers m and n are to be entered in base 10, digit by
digit, via a keyboard. Write computer code to implement the standard
algorithms of column arithmetic in order to output to the screen (in the
same format):

(i) m` n

(ii) m´ n

(iii) mˆ n

(iv) (if n is a divisor of m) m˜ n

(v) (if n is not a divisor of m) the integer part q of the quotient m˜ n and
the remainder r.

(b) Repeat the challenge of part (a), but this time try to write shorter code
by using recursion (or other programming tricks).

(c) Repeat the challenge of parts (a) and (b), but this time with inputs and
outputs in the binary numeral system (see Section 2.8). 4

2.4. Divisibility tests

An integer written in base 10:

is divisible by 10 precisely when the units digit is 0.
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Because 10 “ 2ˆ 5, it follows that an integer (in base 10):

is divisible by 5 precisely when the units digits is 0 or 5 (i.e. a
multiple of 5); and

is divisible by 2 precisely when the units digit is 0, 2, 4, 6, or 8 (i.e.
a multiple of 2).

Because 100 “ 4ˆ 25, it follows that an integer:

is divisible by 4 precisely when the integer formed by its last two
digits is a multiple of 4; and

is divisible by 25 precisely when its last two digits are 00, 25, 50,
or 75 (that is, a multiple of 25).

Because 1000 “ 8ˆ 125, it follows that an integer:

is divisible by 8 precisely when the integer formed by its last three
digits is a multiple of 8.

Hence simple tests for divisibility by 2, by 4, by 5, by 8, and by 10 all follow
easily from the way we write numbers in base 10.

Problem 51

(a) Prove that, when an integer is written in base 10, the remainder when it is
divided by 9 is equal to the remainder when its “digit-sum” is divided by
9. Conclude that the remainder when an integer is divided by 3 is equal
to the remainder when its “digit-sum” is divided by 3.

(b) Explain why an integer is divisible by 6 precisely when it is divisible both
by 2 and by 3. 4

Problem 52

(a) What can you say about an integer N which is divisible by three times
the sum of its base 10 digits?

(b) Find all integers which are equal to three times the sum of their base 10
digits.

(c) Find the smallest positive multiple of 9 with no odd digits. 4

Problem 53 Prove than an integer written in base 11 is divisible by ten
precisely when its digit-sum is divisible by ten. 4
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2.5. Sequences

We have already met

• the sequence of natural numbers (1, 2, 3, 4, 5, . . . ),

• the sequence of squares (1, 4, 9, 16, 25, . . . ),

• the sequence of cubes (1, 8, 27, 64, 125, . . . ),

• the sequence of prime numbers (2, 3, 5, 7, 11, 13, 17, . . . ),

• the sequence of powers of 2 (1, 2, 4, 8, 16, 32, . . . ), and the sequence of
powers of 4 p1, 4, 16, 64, 256, . . . q.

We have also considered

• the sequence of units digits of the powers of 4 p1, 4, 6, 4, 6, 4, 6, . . . q,

• the sequence of leading digits of the powers of 4 p1, 4, 1, 6, 2, 1, 4, . . . q.

2.5.1 Triangular numbers

Problem 54

(a) Evaluate the first twelve terms of the sequence of triangular numbers:

1, 1` 2, 1` 2` 3, 1` 2` 3` 4, . . . , 1` 2` 3` ¨ ¨ ¨ ` 10` 11` 12.

(b) Find and prove a formula for the nth triangular number

Tn “ 1` 2` 3` ¨ ¨ ¨ ` n.

(c) Which triangular numbers are also (i) powers of 2? (ii) prime?
(iii) squares? (iv) cubes? 4

2.5.2 Fibonacci numbers

The Hindu-Arabic numeral system emerged in the Middle East in the 10th

and 11th centuries. Fibonacci, also known as Leonardo of Pisa, is generally
credited with introducing this system to Europe around 1200 – especially
through his book Liber Abaci (1202). One of the problems in that book
introduced the sequence that now bears his name.

The sequence of Fibonacci numbers begins with the terms F0 “ 0, F1 “ 1,
and continues via the Fibonacci recurrence relation:

Fn`1 “ Fn ` Fn´1.
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The sequence was introduced through a curious problem about breeding
rabbits; but to this day it continues to feature in many unexpected corners
of mathematics and its applications.

Problem 55

(a)(i) Generate the first twelve terms of the Fibonacci sequence:

F0, F1, . . . , F11.

(ii) Use this to generate the first eleven terms of the sequence of
“differences” between successive Fibonacci numbers. Then generate
the first ten terms of the sequence of “differences between successive
differences”.

(iii) Find an expression for the mth term of the kth sequence of differences.

(b)(i) Generate the first twelve terms of the sequence of powers of 2:

20, 21, 22, . . . , 211.

(ii) Use this to generate the first eleven terms of the sequence of
“differences” between successive powers of 2. Then generate the first ten
terms of the sequence of “differences between successive differences”.

(iii) Find an expression for the mth term of the kth sequence of differences.
4

The sequence of differences between successive terms in the sequence of
triangular numbers is just the sequence of natural numbers (starting with
2):

2, 3, 4, 5, 6, . . . ;

and the sequence of “second differences” is then constant :

1, 1, 1, 1, 1, . . . .

The sequences of powers of 2 and the Fibonacci numbers behave very
differently from this, in that taking differences reproduces something very
like the initial sequence. In particular, taking differences can never lead to
a constant sequence.

Logically the next four problems should wait until Chapter 6, where we
address the delicate matter of “proof by mathematical induction”. However,
that would deprive us of the chance to sample the kind of surprises that
lie just beneath the surface of the Fibonacci sequence, and to experience
the process of fumbling our way towards a structural understanding of the
apparent patterns that emerge. Of course, each time we think we have
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managed to guess what seems to be true, we face the challenge of proof.
Those who have not yet mastered “proof by induction” are encouraged
to get what they can from the solutions, and to view this as an informal
introduction to ideas that will be squarely addressed in Chapter 6.

Problem 56

(a)(i) Generate the sequence of partial sums of the sequence of powers of 2:

20, 20 ` 21, 20 ` 21 ` 22, 20 ` 21 ` 22 ` 23, . . .

(ii) Prove that each partial sum is 1 less than the next power of 2.

(b)(i) Generate the sequence of partial sums of the Fibonacci sequence:

F0, F0 ` F1, F0 ` F1 ` F2, F0 ` F1 ` F2 ` F3, . . .

(ii) Prove that each partial sum is 1 less than the next but one Fibonacci
number. 4

Problem 56(b) starts out with the observation that

F0 ` F1 “ F3 ´ 1

which is a consequence of the first two instances of the fundamental
recurrence relation

Fn´1 ` Fn “ Fn`1

and derives a surprising value for the nth partial sum:

F0 ` F1 ` F2 ` ¨ ¨ ¨ ` Fn´1.

Fibonacci numbers make their mathematical presence felt in a quiet way
– partly through the almost spooky range of unexpected internal relations
which they satisfy, as illustrated in Problem 56(b) and in the next few
problems.

Problem 57

(a) Note that
F 2
n “ Fn´0Fn`0 “ F 2

n ` p´1qn´1F0.

(i) Evaluate the succession of terms:

F1´1F1`1, F2´1F2`1, F3´1F3`1, F4´1F4`1, . . . .
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(ii) Guess a simpler expression for the product Fn´1Fn`1. Prove your guess
is correct.

(b) Let a, b, c, d ě 0.

(i) Show that the parallelogram OABC spanned by the origin O, and the
points A “ pa, bq, C “ pc, dq and their sum B “ pa` c, b` dq has area
|ad´ bc|.

(ii) Find the area of the first parallelogram in the sequence of “Fibonacci
parallelograms”, spanned by the origin O, and the points A “

pF0, F1q “ p0, 1q, C “ pF1, F2q “ p1, 1q.

(iii) Show that the nth parallelogram OACB in this sequence, spanned by
the origin O, and the points A “ pFn´1, Fnq and B “ pFn, Fn`1q, and
the pn ` 1qth parallelogram OBDC spanned by the origin O, and the
points B “ pFn, Fn`1q and C “ pFn`1, Fn`2q overlap in the triangle
OBC, which is exactly half of each parallelogram.

Conclude that every such parallelogram has area 1. Relate this to the
conclusion of (a)(ii). 4

The basic recurrence relation for Fibonacci numbers specifies the next term
as the sum of two successive terms. We now consider what this implies about
the sum of the squares of two successive terms.

Problem 58

(a) Evaluate the first few terms of the sequence

F 2
0 ` F

2
1 , F

2
1 ` F

2
2 , F

2
2 ` F

2
3 , . . . .

(b) Guess a simpler expression for the sum F 2
n´1 ` F 2

n . Prove your guess is
correct. 4

Problem 59

(a) Note that
F0F4 “ 0 “ F 2

2 ´ 1, F1F5 “ 5 “ F 2
3 ` 1.

(i) Evaluate the succession of terms:

F2´2F2`2, F3´2F3`2, F4´2F4`2, F5´2F5`2, F6´2F6`2, . . . .

(ii) Guess a simpler expression for the product Fn´2Fn`2. Prove your guess
is correct.
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(b)(i) Evaluate the succession of terms:

F3´3F3`3, F4´3F4`3, F5´3F5`3, F6´3F6`3, . . . .

(ii) Guess a simpler expression for the product Fn´3Fn`3. Prove your guess
is correct. 4

2.6. Commutative, associative and distributive laws

In this short section we re-emphasise the shift away from blind calculation,
and towards consideration of the structure of arithmetic, which was already
implicit in Problems 7–10, and Problems 16–17 in Chapter 1.

Problem 60 Each of two positive numbers a and b is increased by 10%.

(i) What is the percentage change of their sum a` b?

(ii) What is the percentage change of their product aˆ b?

(iii) What is the percentage change in their quotient a
b ? 4

Problem 61 The numbers a, b, c, d, e, f are positive. How will the value of
the expression

a˜ pb˜ pc˜ pd˜ pe˜ fqqqq

change if the value of f is doubled? 4

Problem 62 In Problem 17 we saw that it is no accident that the sum of
entries in the 4 by 4 ‘multiplication table’ is equal to 100.

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

(a) Go back to the proof that the total is equal to p1 ` 2 ` 3 ` 4q2 and see
how this depends on the distributive law.

(b) The total of all entries in the multiplication square can be broken down
into a succession of “reverse L-shapes”, such as the one formed by the
bottom row and right hand column (shown above in bold).

(i) Work out the subtotal in each of the four reverse L-shapes in the 4 by
4 multiplication table. What do you notice about these four subtotals?
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(ii) Use the formulae for the kth and pk ´ 1qth triangular numbers Tk and
Tk´1 to prove that, in the n by n multiplication table, the kth reverse
L-shape always gives rise to a subtotal k3.

Conclude that
T 2
n “ 13 ` 23 ` 33 ` ¨ ¨ ¨ ` n3.

Hence find a simple formula for the sum Cn of the first n cubes. 4

Now that we have a compact formula

• for the sum Tn of the first n positive integers, and

• for the sum Cn of the first n positive cubes,

we would naturally like to find a similar formula

• for the sum Sn of the first n squares:

Sn “ 12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2

(that is, the sum of the entries on the leading diagonal of the n by n
multiplication square).

This can be surprisingly elusive. But one way of obtaining it is to look
instead for the sum of the entries in the sloping diagonal 2, 6, 12, 20, . . . just
above the main diagonal in the n by n multiplication square.

Problem 63 Consider the n by n multiplication square.

(a) Express the rth term in the sloping diagonal just above the main diagonal
in terms of r. Hence show that the sum of entries in this sloping diagonal
is equal to Sn´1 ` Tn´1.

(b) Multiply by 3 each of the terms in the sloping diagonal just above the
main diagonal.

(i) Guess a formula for the successive sums of these terms (6, 6 ` 18, 6 `
18` 36, . . . ), and prove that your formula is correct.

(ii) Hence derive a formula for the sum Sn of the first n squares. 4

2.7. Infinite decimal expansions

The standard written algorithms for calculating with integers extend
naturally to terminating decimals. But how is one supposed to calculate
exactly with decimals that go on for ever?
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Problem 64 The decimals listed here all continue forever, recurring in the
expected way. Calculate:

(a) 0.55555 ¨ ¨ ¨ ` 0.66666 ¨ ¨ ¨ “

(b) 0.99999 ¨ ¨ ¨ ` 0.11111 ¨ ¨ ¨ “

(c) 1.11111 ¨ ¨ ¨ ´ 0.22222 ¨ ¨ ¨ “

(d) 0.33333 ¨ ¨ ¨ ˆ 0.66666 ¨ ¨ ¨ “

(e) 1.22222 ¨ ¨ ¨ ˆ 0.818181 ¨ ¨ ¨ “ 4

Problem 65

(a) Show that any decimal bnbn´1 ¨ ¨ ¨ b0.b´1b´2 ¨ ¨ ¨ b´k that terminates can be
written as a fraction with denominator a power of 10.

(b) Show that any fraction that is equivalent to a fraction with denominator
a power of 10 has a decimal that terminates.

(c) Conclude that a fraction p
q , for which HCF pp, qq “ 1, has a decimal

that terminates precisely when q divides some power of 10 (that is, when
q “ 2a ˆ 5b for some non-negative integers a, b).

(d) Prove that any fraction p
q , for which HCF pp, qq “ 1, and where q is not of

the form q “ 2a ˆ 5b, has a decimal which recurs, with a recurring block
of length at most q ´ 1.

(e) Prove that any decimal which recurs is the decimal of some fraction. 4

Problem 66

(a) Find the fraction equivalent to each of these recurring decimals:

(i) 0.037037037 ¨ ¨ ¨

(ii) 0.370370370 ¨ ¨ ¨

(iii) 0.703703703 ¨ ¨ ¨

(b) Let a, b, c be digits (0 ď a, b, c ď 9).

(i) Write the recurring decimal “0.aaaaa ¨ ¨ ¨ ” as a fraction.

(ii) Write the recurring decimal “0.ababababab ¨ ¨ ¨ ” as a fraction.

(iii) Write the recurring decimal “0.abcabcabcabcabc ¨ ¨ ¨ ” as a fraction. 4
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Problem 67 Find the lengths of the recurring blocks for:

(a)
1

6
,

5

6

(b)
1

7
,

2

7
,

3

7
,

4

7
,

5

7
,

6

7

(c)
1

11
,

2

11
,

3

11
,

4

11
,

5

11
,

6

11
,

7

11
,

8

11
,

9

11
,

10

11

(d)
1

13
,

2

13
,

3

13
,

4

13
,

5

13
,

6

13
,

7

13
,

8

13
,

9

13
,

10

13
,

11

13
,

12

13
4

Problem 68 Decide whether each of these numbers has a decimal that
recurs. Prove each claim.

(a) 0.12345678910111213141516171819202122232425262728293031 ¨ ¨ ¨

(b) 0.100100010000100000100000010000000100000000100000000010 ¨ ¨ ¨

(c)
?

2 4

Problem 69 For which real numbers x is the decimal representation of x
unique? 4

Problem 68 raises the question as to whether one person, who has total
control, can specify the digits of a decimal so as to be sure that it neither
terminates nor recurs: that is, so that it represents an irrational number.
The next problem asks whether one person can achieve the same outcome
with less control over the choice of digits.

Problem 70 Players A and B specify a real number between 0 and 1. The
first player A tries to make sure that the resulting number is rational ; the
second player B tries to make sure that the resulting number is irrational. In
each of the following scenarios, decide whether either player has a strategy
that guarantees success.

(a) Can either player guarantee a “win” if the two players take turns to specify
successive digits: first A chooses the entry in the first decimal place, then
B chooses the entry in the second decimal place, then A chooses the entry
in the third decimal place, and so on?
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(b) Can either player guarantee a win if A chooses the digits to go in the
odd-numbered places, and (entirely separately) B chooses the digits to go
in the even-numbered places?

(c) What if A chooses the digits that go in almost all the places, but allows B
to choose the digits that are to go in a sparse infinite collection of decimal
places (e.g. the prime-numbered positions; or the positions numbered by
the powers of 2; or . . . )?

(d) What if A controls the choice of all but a finite number of decimal digits?
4

2.8. The binary numeral system

There are all sorts of reasons why one should give thought to numeral systems
using bases different from the familiar base 10. This is especially true of base
2, which is the simplest system of all, and is also (in some sense) the most
widely used. What follows is only intended to offer a restricted glimpse into
this alternative universe.

Problem 71 The numbers in this item are all written in base 2.

(a) Carry out the addition

1 1 1 0 0
` 1 1 1 0

without changing the numbers into their base 10 equivalents – simply by
applying the rules for base 2 column addition and “carrying”.

(b) Carry out these long multiplications without changing the numbers into
their base 10 equivalents – simply by applying the rules for base 2 column
multiplication.

(i)
1 0 1 1 0

ˆ 1 0 (ii)
1 1 1 0

ˆ 1 1 (iii)
1 1 0

ˆ 1 1 1

(c) Try to add these fractions (where the numerators and denominators are
numerals written in base 2) without changing the fractions into more
familiar base 10 form.

110

1111
`

1

10
`

1001

1110 4

The next problem invites you to devise divisibility tests for integers written
in base 2 like those for base 10 (that is, tests which implement some check
involving the base 2 digits in place of carrying out the actual division).
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Problem 72 Let N be a positive integer written in base 2. Describe and
justify a simple test, based on the digits of Nbase2:

(i) for N to be divisible by 2

(ii) for N to be divisible by 3

(iii) for N to be divisible by 4

(iv) for N to be divisible by 5. 4

Problem 73 A mathematical merchant has a pair of scales and an infinite
set of calibrated integral weights with values w0, w1, w2, . . . (where w0 ă

w1 ă w2 ă . . . ), but with only one weight of each value.

(a) Suppose that, for each object of positive integer weight w whose weight is
to be determined, when the object is placed in one scale pan, the merchant
is able to select some combination of his weights w0, w1, w2, . . . to put in
the other scale pan to balance, and hence to determine the weight of, the
object to be weighed.

(i) If for each weight w there is a unique choice of weights wi that balance
w, prove that the collection of weights must consist of all the powers of
2.

(ii) If every object of unknown integral weight w can be balanced by some
collection of the weights wi, but some weights w can be balanced, or
“represented”, in more than one way, is it true that the merchant’s
collection of weights has to include all the powers of 2?

(b) What can you prove if the merchant’s set of weights allow him to balance
every unknown integer weight w in exactly one way by varying his weighing
procedure, so that he can place his “known weights” in either scale pan
(either in the same scale pan as the unknown weight to add to its weight,
or in the opposite scale pan to balance it)? 4

Problem 74 Explain how to express any fraction

m

2n

where 0 ă m ă 2n as a sum of distinct unit fractions with denominator a
power of 2. 4
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You may have heard of an algorithm (a bit like long division) which allows
one to compute by hand the square root of any number N given in base
10. The algorithm starts by grouping the digits of N in pairs, starting from
the decimal point. It then extracts the square root, digit by digit, with the
square root having one digit for each successive pair of digits of N , starting
with the left-most pair (which may be a single digit).

We all know how to start the process. For example, if the left-most pair of
digits in N is “12”, then we know that the square root starts with a “3”.
Successive digits are then identified using the algebraic identity

N “ px` yq2 “ x2 ` 2xy ` y2,

where x is the sequence of leading digits in the “partial square root”
extracted so far (followed by an appropriate string of 0s), and y stands
for the residual part of the required square root.

The key is to concentrate each time on the leading digit Y of the residue
“N ´ x2”, and at each stage to choose the leading digit Y of y so that
2xy ` y2 does not exceed N ´ x2. This sequence of steps is traditionally
(and helpfully) laid out in much the same way as long division, where at
each stage we subtract the square of the current approximate square root x,
from the original number N , and “bring down” the next pair of digits, and
then choose the next digit Y in the square root (the leading digit of y) so
that “2xy ` y2” does not exceed the residue N ´ x2.

In base 10 each stage requires one to juggle possibilities to decide on the
next digit in the partial square root. However, in base 2 the process should
be simpler, since at each stage we only have to decide whether the next digit
is a 1 or a 0.

Problem 75 Work out how to calculate the square root of any square given
in base 2. 4

2.9. The Prime Number Theorem

We have already observed that there are 4 primes less than 10, 25 primes
less than 100, and 168 primes less than 1000. And there are 78 498 primes
less than 106. So

40% of integers ă 10 are prime;
25% of integers ă 100 are prime;
16.8% of integers ă 1000 are prime; and
7.8498% of integers ă 106 are prime.

In other words, the fraction of integers which are prime numbers diminishes
as we go up.
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The first question to ask is whether prime numbers themselves “run out” at
some stage, or whether they go on for ever. The answer is very like that for
the counting numbers, or positive integers 1, 2, 3, 4, 5, . . . :

the counting process certainly gets started (with 1); and
no matter how far we go, we can always “add 1” to get a larger
counting number.

Hence we conclude that the counting numbers “go on for ever”.

Problem 76

(a)(i) Start the process of generating prime numbers by choosing your
favourite small prime number and call it p1.

(ii) Then define n1 “ p1 ` 1.

(b)(i) Since n1 ą 1, n1 must be divisible by some prime. Explain why p1 is
not a factor of n1. (What is the remainder when we divide n1 by p1?)

(ii) Let p2 be the smallest prime factor of n1.

(iii) Define n2 “ p1 ˆ p2 ` 1

(c)(i) Since n2 ą 1, n2 must be divisible by some prime. Explain why p1 and
p2 are not factors of n2. (What is the remainder when we divide n1 by
p1, or by p2?)

(ii) Let p3 be the smallest prime factor of n2.

(iii) Define n3 “ p1 ˆ p2 ˆ p3 ` 1

(d) Suppose we have constructed k distinct prime numbers p1, p2, p3, . . . , pk.
Explain how we can always construct a prime number pk`1 different from
p1, p2, . . . , pk.

(e) Apply the above process with p1 “ 2 to find p2, p3, p4, p5. 4

Once we know that the prime numbers go on for ever, we would like to have
a clearer idea as to the frequency with which prime numbers occur among
the positive integers. We have already noted that

• there are 4 primes between 1 and 10,

• and again 4 primes between 10 and 20;

• but there is only 1 prime in the 90s;

• and then 4 primes between 100 and 110.

• And there are no primes at all between 200 and 210.
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In other words, the distribution of prime numbers seems to be fairly chaotic.
Our understanding of the full picture remains fragmentary, but we are about
to see that the apparent chaos in the distribution of prime numbers conceals
a remarkable pattern just below the surface.

The next item is only an experiment; but it is a very suggestive experiment.
It is artificial, in that what you are invited to count has been carefully chosen
to point you in the right direction. The resulting observation is generally
referred to as the Prime Number Theorem. The result was conjectured by
Legendre (1752–1833) and by Gauss (1777–1855) in the late 1790s – and was
proved 100 years later (independently and almost simultaneously) in 1896
by the French mathematician Hadamard (1865–1963) and by the Belgian
mathematician de la Vallée Poussin (1866–1962). You will need to access a
list of prime numbers up to 5000 say.

Problem 77 Let πpxq denote the number of prime numbers ď x: so πp1q “
0, πp2q “ 1, πp3q “ πp4q “ 2, πp100q “ 25. You are invited to count
the number of primes up to certain carefully chosen numbers, and then to
study the results. The pattern you should notice works just as well for other
numbers – but is considerably harder to spot.

The special values we choose for “x” are

the next integer above successive powers of the special number e,

where e is an important constant in mathematics – an irrational number
whose decimal begins 2.7182818 ¨ ¨ ¨ , and which has its own button on most
calculators (see Problem 248).

(a) Complete the following table.

n en next integer N πpNq
1 2.718 ¨ ¨ ¨ 3 2
2 7.389 ¨ ¨ ¨
3 20.08 ¨ ¨ ¨
4 54.59 ¨ ¨ ¨
5 148.41 ¨ ¨ ¨
6 403.42 ¨ ¨ ¨
7 1096.63 ¨ ¨ ¨
8 2980.95 ¨ ¨ ¨
9 8103.08 ¨ ¨ ¨ 1019

(b) Find an expression that seems to specify πpNq as a function of n. Hence
conjecture an expression for πpxq in terms of x. 4
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Durch planmässiges Tattonieren.
[Through systematic fumbling.]

Carl Friedrich Gauss (1777–1855),
when asked how he came to make so many

profound discoveries in mathematics.

2.10. Chapter 2: Comments and solutions

40.

(a)(i) 111 111 111

(ii) 9009 (1001 “ 7ˆ 11ˆ 13 is a factorisation that is worth remembering for all
sorts of reasons: for example, it incorporates 91 “ 7 ˆ 13; and it lies behind
certain tests for divisibility by 7).

(b) (i) 1 001 001; (ii) 1 001 001; (iii) 3 003 003 (since 111 “ 3ˆ 37)

41.

(i) p10` 1q2 “ 102
` 2ˆ 10` 12

“ 121;

(ii) p10` 1q3 “ 103
` 3ˆ 102

` 3ˆ 10` 13
“ 1331;

(iii) p100` 1q2 “ 1002
` 2ˆ 100` 12

“ 10 000` 200` 1 “ 10 201

42.

(a)(i) Largest 8, smallest 7. (The smallest 3-digit number is 100 and the smallest
5-digit number is 10 000, so the smallest possible product is 102

ˆ 104
“ 106

– and so has 7 digits. The largest 3-digit number is just less than 1000 and
the largest 5-digit number is just less than 100 000, so the largest possible
product is just less than 103

ˆ 105
“ 108 – and so has 8 digits.)

(ii) Largest m ` n, smallest m ` n ´ 1. (The smallest m-digit number is 10m´1

and the smallest n-digit number is 10n´1, so the smallest possible product is
10m`n´2 – and so has m`n´1 digits. The largest m-digit number is just less
than 10m and the largest n-digit number is just less than 10n, so the largest
possible product is just less than 10m ˆ 10n “ 10m`n – and so has m ` n
digits.)

(b)(i) 210
“ 1024 is very slightly larger than 103. Hence 220

“ 10242 is very slightly
larger than 106, so has 7 digits.

(ii) 220 is very slightly larger than 106. In fact

p103
` 24q2 “ 106

` 2ˆ 103
` 242

“ 106
` 2ˆ 103

` 576 “ 1 002 576.

`

1
2

˘20
is its reciprocal, so is slightly smaller than 10´6

“ 0.000001, so it starts
with six 0s after the decimal point and rounds up to 0.000001 (to 6 d.p.).

(c) No. (It can be equal to the product of its digits if it has just 1 digit. If a
number N has k digits, with leading digit “ m, then N ě m ˆ 10k´1, but the
product of its digits is at most mˆ 9k´1.)



70 Arithmetic

(d)(i) 3, 6. (215
ˆ 53

“ 212
ˆ 103

“ 4096ˆ 103)

(ii) 4, 4. (Most of us will need some rough work to supplement mental arithmetic
here.

20! “ 20ˆ 19ˆ 18ˆ ¨ ¨ ¨ ˆ 2ˆ 1

“ 218
ˆ 38

ˆ 54
ˆ 72

ˆ 11ˆ 13ˆ 17ˆ 19

“ 104
ˆ 214

ˆ 38
ˆ 72

ˆ 11ˆ 13ˆ 17ˆ 19.

So 20! ends in 4 zeros, and its last non-zero digit is equal to the units digit of
214

ˆ 38
ˆ 72

ˆ 11 ˆ 13 ˆ 17 ˆ 19. If we work “mod 10” this is equal to the
units digit of 4ˆ 1ˆ 9ˆ 1ˆ 3ˆ 7ˆ 9.)

Note: The reader may notice that we have used “congruences”, or “modular
arithmetic” (mod 10) here and at several points in Chapter 1 (e.g. in the solutions
to Problem 2(d), Problem 13, Problem 16(b)).

In all these contexts one only needs to know that, if we fix the divisor n, then the
remainders on division by n can be added and multiplied like ordinary numbers,
since

pan` rq ` pbn` sq “ pa` bqn` pr ` sq,

and
pan` rqpbn` sq “ pabn` as` brqn` rs.

Division is more delicate. We leave the reader to look up the details in any book
on elementary number theory.

43. (a) 00 000 123 450 (b) 99 999 785 960

The initial number p12 ¨ ¨ ¨ 9 10 11 ¨ ¨ ¨ 59 60q has 9`50ˆ2`2 “ 111 digits. Hence
we are left with a number having exactly 11 digits.

For the smallest integer, we delete digits to leave the smallest initial digits
(preferably 0s).

For the largest integer, we delete digits to leave as many 9s at the front as possible
(and then sort out the tail).

44.
11 111 111 “ 11 110 000` 1111 “ 1111ˆ 10 001.

In much the same way
1111 ¨ ¨ ¨ 1111000

(with 1108 1s and three 0s) is exactly divisible by 1111. So the remainder is 111.

45. Compare p105
` 1qp107

` 2q and p105
` 2qp107

` 1q.

The second is 107
´ 105 bigger than the first, so the second fraction is bigger than

the first.

46. The fact that 3 ˆ 7 “ 21, and the position of the zeros, suggests that we
express the integer as:

1035
` 3ˆ 1024

` 7ˆ 1011
` 3ˆ 7 “ p1011

` 3qp1024
` 7q.
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Note: If you feel you should have been “given a hint”, then pause for a moment.
There is nothing misleading here. We have no standard techniques for analysing
such large numbers. The very size of the number forces you to think whether there
is anything familiar about it that you might use. And the number is so simple
that the only thing that can possibly stand out is the 3, 7, and 21. The rest is up
to you.

47.

(a) 11 is prime. And 111 is a multiple of 3: 111 “ 3ˆ 37. You should also be able
to see that 1111 is a multiple of 11: 1111 “ 11ˆ 101.

It is unclear whether 11 111 is prime or not. The Square Root Test says that
to decide, we only need to check possible prime factors up to

?
11 111 ă 107.

We can eliminate 2, 3, 5, 7, 11 mentally, with very little effort. And with a
calculator, it is easy to check 13, 17, 19, 23, 29, 31, 37, 41, . . . and to discover
that 11 111 “ 41ˆ 271.

Clearly 111 111 “ 11ˆ 10 101 “ 111ˆ 1001.

So the sequence does not look too promising. All the even-numbered terms are
divisible by 11; every third term is divisible by 111 (and of course, by 3); every
fourth term is divisible by 1111 (and hence by 101); and so on. So the only
possible candidates for primes are the second, third, fifth, seventh, eleventh, . . .
terms: that is the terms in prime positions.

Each of these terms is equal to the second bracket in the factorisation:

10p ´ 1 “ p10´ 1qp10p´1
` 10p´2

` ¨ ¨ ¨ ` 10` 1q,

where p is a prime number.

We have seen that 111 “ 3ˆ 37, and that 11 111 “ 41ˆ 271, which is not very
encouraging. The 7th, 11th, 13th, and 17th terms are also not prime. But the
19th term and the 23rd terms are prime.

So primes seem scarce, but 11 is not the only prime in the sequence.

Note: Again, if you feel the problem was misleading, then pause for a moment.
Part of “the essence of mathematics” is learning that some problems have a tidy
solution, while others open up a rather different agenda. The only obvious way
to begin to recognise this distinction is occasionally to be left to struggle to solve
something that is presented as if it were a closed problem (with a tidy solution),
only to discover that it is messier than one expected.

(b) We have already seen that 1001 “ 7ˆ 11ˆ 13.

Another reason for remembering this is that it is a simple instance of the
standard factorisation:

103
` 1 “ p10` 1qp102

´ 10` 1q

Because the signs in the second bracket are alternately “`” and “´’, this
factorisation extends to all odd powers of 10: for example,

100 001 “ 105
` 1 “ p10` 1qp104

´ 103
` 102

´ 10` 1q

So this time, 11 is the only prime in the list.
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Note: The missing “odd” terms

101, 10 001, 1 000 001, 100 000 001, . . . . . .

are slightly different – each being of the form x2 ` 1.

The fact that there is an algebraic factorisation of

x3 ` 1 “ px` 1qpx2 ´ x` 1q

implies that 1001 “ 103
` 1 has to factorise. But the lack of an algebraic

factorisation of x2 ` 1 does not prevent any particular number of the form x2 ` 1
from factorising: for example, 32

` 1 “ 2ˆ 5, and 52
` 1 “ 2ˆ 13 both factorise;

but 42
` 1, 62

` 1, and 102
` 1 do not.

One may be forgiven for not knowing that 104
` 1 “ 10 001 “ 73 ˆ 137. But one

should realize that

106
` 1 “ 1003

` 1 “ p100` 1qp1002
´ 100` 1q.

48. The prime factorisation 111 “ 3ˆ 37 is worth remembering. If this is second
nature, then one can do better in this problem than merely grind out the answer
using long multiplication, by seeing how the output to the calculation 1001ˆ 333
simply positions “333 thousands” and “333 units” next to each other:

3ˆ 37 “ 111, so 9ˆ 37 “ 333.

Hence 9009ˆ 37 “ 1001ˆ 333 “ 333 333.

Note: The prime factorisation of 1001 is not needed here. But it is important
elsewhere.

49. The very first step shows that the leading digit of the dividend must be 1;
and since “three-digit minus two-digit leaves one-digit (d say)” the divisor has a
multiple in the 90s.

The very next stage again gives “three-digit minus two-digit leaves one-digit”, and
the remainder from the first division is now the hundreds digit, so d “ 1. Hence
the two-digit divisor has 99 as a multiple (at the first step of the long division) –
so the divisor must be 11, 33, or 99.

The next division shows that the divisor has a two-digit multiple, which when
subtracted from a two-digit number leaves a two-digit remainder, so the divisor
cannot be 99.

The final stage shows that the divisor has a three-digit multiple, so it cannot be
11.

Hence the divisor must be 33.

50. Your solution will depend on the programming language used. We use this
problem to attract the reader’s attention to some not so frequently discussed issues:

• The “formal written algorithms” of arithmetic are not entirely obvious.

• Their practical use is not really “formal”, it uses a number of unstated
conventions. For example, it requires from the user an intuitive feel for the “data
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structures” involved and starts by writing one base 10 integer under another
keeping digits in the same decimal position aligned in a column (a computer
scientist would call it “parsing the input”).

• Base 10 integers contain different numbers of digits and shorter ones may need
to be padded with zeroes (mentally, in calculations on paper, or explicitly, as
may be necessary when writing code), that is, 1234 ` 56 has to be treated as
1234` 0056.

• Digits in the number are read and used from right to left, the opposite way to
reading text. (This may be a piece of fossilised history: our decimals are Arabic,
and Arabs write from right to left.)

51.

(a) This exploits the fact that

p10k ´ 1q “ p10´ 1qp10k´1
` 10k´2

` ¨ ¨ ¨ ` 10` 1q,

and so is divisible by p10´1q (a fact which is obvious when we write 10´1 “ 9,
102

´ 1 “ 99, 103
´ 1 “ 999, etc.). For example:

12 345 “ 1ˆ 104
` 2ˆ 103

` 3ˆ 102
` 4ˆ 10` 5

“ r1ˆ p104
´ 1q ` 2ˆ p103

´ 1q ` 3ˆ p102
´ 1q ` 4ˆ p10´ 1qs

` r1` 2` 3` 4` 5s

“ ra sum of terms, each of which is a multiple of 9s

` rthe sum of the digits of “12 345”s

If the LHS is divided by 9, the remainder from the first bracket on the RHS is
zero, so the overall remainder is the same as the remainder from dividing the
digit sum by 9.

Since 9 is a multiple of 3, the first bracket is exactly divisible by 3. Hence if the
LHS is divided by 3, the remainder from the first bracket on the RHS is zero,
and the overall remainder is the same as the remainder from dividing the digit
sum by 3.

Note: If we were only interested in “divisibility by 9”, then we could have managed
without appealing to the algebraic factorisation

p10k ´ 1q “ p10´ 1qp10k´1
` 10k´2

` ¨ ¨ ¨ ` 10` 1q,

since
10´ 1 “ 9, 102

´ 1 “ 99, 103
´ 1 “ 999, . . .

are all visibly “multiples of 9”. However, the structure of the above solution extends
naturally to prove that, when an integer is written in base b, the remainder on
division by b´ 1 is the same as the remainder on dividing the base b “digit sum”
by b´ 1.

(b) If an integer N is divisible by 6, then we can write N “ 6m for some integer m.
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Hence N “ p2ˆ 3qm “ 2ˆ p3mq, so N is a multiple of 2; and N “ 3ˆ p2mq, so
N is a multiple of 3.

If an integer N is divisible by 2, then we can write N “ 2k for some integer k.

If N is also divisible by 3, then 3 divides exactly into 2k. But HCF p2, 3q “ 1,
so the 3 must go exactly into the second factor k, so k “ 3m for some integer
m, and N “ 6m is divisible by 6.

Note: It is crucial that HCF p2, 3q “ 1. (E.g. 12 is divisible by 6 and by 4; but 12
is not divisible by 6ˆ 4.)

52.

(a) N is divisible by 3. Hence its digit-sum is divisible by 3.

But then “three times the sum of its digits” is a multiple of 9: hence the integer
is divisible by 9, and so the sum of its digits is divisible by 9.

But then it is divisible by “three time a multiple of 9” – that is divisible by 27.
So N “ 27, or 54, or 81, or 108, or . . . . (However, you soon come to the first
multiple of 27 that is not “divisible by 3 times the some of its digits”.)

(b) 27. (Suppose the integer N has k digits. Then N ě 10k´1, and its digit-sum is
at most 9k. If N is equal to “three times the sum of its digits”, then 10k´1

ď

N ď 27k which means k ď 2. And from part (a) we know that N is a multiple
of 27.)

(c) 288. (If the digit sum is equal to 9 (or any odd multiple of 9), then at least one
digit must be odd; so we only need to worry about integers with digit-sum equal
to 18, or 36, or . . . . The only such multiple of 9 up to 100 is 99. All multiples of
9 between 100 and 200 have an odd hundreds digit. In the 200s, the first integer
with digit-sum 18 is 279 – with two odd digits. The next is 288.)

53. (a) This exploits the fact that

p11k ´ 1q “ p11´ 1qp11k´1
` 11k´2

` ¨ ¨ ¨ ` 11` 1q,

and so is divisible by p11´ 1q – a fact which is obvious if we introduce a new digit
X in base 11 to stand for “ten”, and then notice that

11´ 1 “ Xbase 11
, 112

´ 1 “ XXbase 11
, 113

´ 1 “ XXXbase 11
, etc.

For example:

12 345base 11
“ 1ˆ 114

` 2ˆ 113
` 3ˆ 112

` 4ˆ 11` 5

“ r1ˆ p114
´ 1q ` 2ˆ p113

´ 1q ` 3ˆ p112
´ 1q ` 4ˆ p11´ 1qs

` r1` 2` 3` 4` 5s

“ ra sum of terms, each of which is a multiple of tens

` rthe sum of the digits of “12 345”s

If the LHS is divided by ten, the remainder from the first bracket on the RHS is
zero, so the overall remainder is the same as the remainder from dividing the digit
sum by ten.
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54.

(a) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78.

(b) Combine two copies of the required sum. If we do this algebraically, we get

1 ` 2 ` 3 ` ¨ ¨ ¨ ` n
n ` n´ 1 ` n´ 2 ` ¨ ¨ ¨ ` 1

and observe that each of the n vertically aligned columns adds to n+1.

Hence

Tn “ 1` 2` 3` ¨ ¨ ¨ ` n “
npn` 1q

2
.

If we do the same geometrically, then we can combine two “staircases”

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

of dots (one of which is inverted) into an n by n ` 1 array of dots (either with
n columns and n` 1 dots in each column, or with n` 1 columns and n dots in
each column).

Note: The nth triangular number is defined by the “formula”

Tn “ 1` 2` 3` ¨ ¨ ¨ ` n.

But this “formula” has serious limitations: in particular, there is no way to
calculate T100 without first calculating T1, then T2, then T3, . . . all the way up
to T99. Hence it is just a “recurrence relation”, which tells us how to find Tn
once we know Tn´1 (just “add n”).

The formula

Tn “
npn`1q

2

derived in part (b) is much more useful, in that it allows us to work out the
value of Tn as soon as we know the value of n. This is what we call a “closed
formula”. (The language may seem strange, but it refers to the fact that the
calculation is direct, and that the formula involves a small, fixed number of
operations – whereas using the recurrence requires more and more work as n
gets larger.)

(c) Note: There are two reasons why these questions are worth asking. The first is
that whenever we focus attention on certain special classes of objects, it is always
good practice to consider whether the notions we have defined are completely
separate, and to try to identify any overlaps. The second reason is less obvious,
but can be surprisingly fruitful: sometimes two ideas may be interesting, yet
have nothing to do with each other; but at other times, the two ideas may
not only be interesting in their own right, but may “combine” in a way that
gives rise to surprising subtleties. Here two of the combinations are routine
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and uninteresting; but two combinations generate more interesting mathematics
than we have a right to expect.

(i) We know that one of the two factors n and n ` 1 in the numerator is odd,
and the other is even. If the triangular number

Tn “
npn`1q

2

is to be a power of 2, then any odd factor of Tn must be equal to 1, so
n ă 3: n “ 2 does not give a power of 2. Hence n “ 1, and Tn “ 1 is the only
triangular number which is also a power of 2.

(ii) If the triangular number Tn is to be prime, then either

∗ n is odd and one of n, n`1
2

is equal to 1 (so n “ 1 and T1 “ 1 is not prime),
or

∗ n is even and one of n
2

, n` 1 is equal to 1, so n “ 2, and T2 “ 3 is the only
triangular number which is also prime.

(iii) The only immediately obvious “square triangular numbers Tn” are the first
and the eighth – namely T1 “ 1 and T8 “ 36. But what seems obvious is rarely
the whole truth. There are in fact infinitely many such “square triangular
numbers” (e.g. T49 “ 1225, T288 “ 41 616, T1681 “ 1 413 721, . . . ). This is a
consequence of the formula in part (b). For example:

When n is even, we notice that a “ n
2

and n ` 1 “ 2a ` 1 are integers
with no common factors. We want their product to be a square. Because
HCF pa, 2a ` 1q “ 1, this occurs precisely when both a (“ b2) and 2a ` 1
(“ c2) are both squares. So we see that solutions correspond to pairs of
integers b, c which satisfy the Pell equation c2 “ 2b2 ` 1. Notice that b “ 2,
c “ 3 is one solution, and that they satisfy the equation c2 ´ 2b2 “ 1.

We have already met
a2 ` b2 “ pa` biqpa´ biq

as the norm (or square of the length) of the complex number a` bi (Problem
25). In a similar way, we can “factorise”

c2 ´ 2b2 “ pc` b
?

2qpc´ b
?

2q.

So once we have one solution of the equation c2´2b2 “ 1, we can take powers
to get more solutions:

rpc` b
?

2q2srpc´ b
?

2q2s “ 12
“ 1, etc..

Hence, for example,
p3` 2

?
2q2 “ 17` 12

?
2

gives rise to the solution b “ 12, c “ 17 – corresponding to a “ 144, n “ 288.

Similarly
p3` 2

?
2q3 “ . . . ` . . .

?
2

gives rise to the solution b “ . . . , c “ . . . , corresponding to (a “ . . . ), n “ . . .
.
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Note: If you are not yet familiar with complex numbers, or with the idea of a
norm, don’t worry. Make a note of it as something that seems to be powerful
and is worth learning. It will reappear later.

(iv) The only obvious cube triangular number is the first one – namely T1 “ 1.
Basic algebra leads quickly to an equation as in part (i):

npn` 1q

2
“ m3,

which is equivalent to
p2n` 1q2 ´ 1 “ p2mq3.

So p2mq3 and p2mq3 ` 1 are consecutive integers that are both proper powers.

Catalan (1814–1894) conjectured in 1844 that 8 “ 23 and 9 “ 32 are the only
consecutive powers (other than 0 and 1). This simple-sounding conjecture was
finally proved only in 2004. It follows that T1 “ 1 is the only triangular number
that is also a cube.

55.

(a)(i) 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

(ii) 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34; 1, 1, 0, 1, 1, 2, 3, 5, 8, 13

(iii) mth term of kth sequence of differences “ Fm´k

(b)(i) 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048

(ii) 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024; 1, 2, 4, 8, 16, 32, 64, 128, 256, 512

(iii) mth term of kth sequence of differences “ 2m

56.

(a)(i) 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .

(ii) xn`1
´ 1 “ px´ 1qpxn ` xn´1

` ¨ ¨ ¨ ` x` 1q.

When x “ 2, the first factor on the RHS px´ 1q “ 1, so

20
` 21

` 22
` ¨ ¨ ¨ ` 2n “ 2n`1

´ 1.

[Alternatively:

20
` p20

` 21
` 22

` ¨ ¨ ¨ ` 2nq “ p20
` 20

r“ 21
sq ` p21

` 22
` ¨ ¨ ¨ ` 2nq

“ p21
` 21

r“ 22
sq ` p22

` 23
` ¨ ¨ ¨ ` 2nq

“ p22
` 22

r“ 23
sq ` p23

` 24
` ¨ ¨ ¨ ` 2nq

“ . . .

“ p2n ` 2nq “ 2n`1.

(b)(i) 0, 1, 2, 4, 7, 12, 20, 33, 54, 88, . . .
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(ii) F0 ` F1 “ F2 “ F3 ´ F1

F0 ` F1 ` F2 “ pF3 ´ F1q ` F2 “ pF3 ` F2q ´ F1 “ F4 ´ F1

F0 ` F1 ` F2 ` F3 “ pF4 ´ F1q ` F3 “ pF4 ` F3q ´ F1 “ F5 ´ F1.

Claim:
F0 ` F1 ` F2 ` ¨ ¨ ¨ ` Fn´1 “ Fn`1 ´ F1

holds for all n ě 1.

Proof: When n “ 1, the LHS “ F0 “ 0 “ 1´ 1 “ F2 ´ F1 “ RHS.

We proved the next few case n “ 2, n “ 3, n “ 4 above.

Suppose we have already proved the required relation holds all the way up to
the pk ´ 1qth equation:

F0 ` F1 ` F2 ` ¨ ¨ ¨ ` Fk´1 “ Fk`1 ´ F1.

Then the kth equation follows like this:

pF0 ` F1 ` F2 ` ¨ ¨ ¨ ` Fk´1q ` Fk “ pFk`1 ´ F1q ` Fk

“ pFk`1 ` Fkq ´ F1

“ Fk`2 ´ F1.

So we have shown

∗ that the identity holds for the first few values, and

∗ that whenever we know it is true up to the pk ´ 1qth identity, it also holds
for the kth identity.

Hence the identity holds for all n ě 1. QED

Alternatively:

F1 ` pF0 ` F1 ` ¨ ¨ ¨ ` Fkq “ pF1 ` F0 r“ F2sq ` pF1 ` F2 ` ¨ ¨ ¨ ` Fkq

“ pF2 ` F1 r“ F3sq ` pF2 ` F3 ` ¨ ¨ ¨ ` Fkq

“ pF3 ` F2 r“ F4sq ` pF3 ` F4 ` ¨ ¨ ¨ ` Fkq

“ . . .

“ Fk`1 ` Fk “ Fk`2.

Note: In 56(a)(ii) we appealed directly to the factorisation of xn`1
´ 1 as though

this were a “known fact” which is easy to prove. And in the “alternative” proof, we
repeatedly combined “2k + 2k” to make 2k`1, inserting dots “. . . ” to indicate that
this replacement operation is repeated n` 1 times. Both of these involved thinly
veiled applications of the principle of Mathematical Induction, which is addressed
in detail in Chapter 6. In 56(b)(ii) we had no way of concealing the use of “proof
by Mathematical Induction”, which is likely to be lurking whenever we have

a proposition, or statement, Ppnq involving the parameter n

and
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we wish to prove the infinite collection of assertions:

“Ppnq is true for every n “ 1, 2, 3, . . . ”.

The standard way of achieving this apparent miracle of proving infinitely many
things at once is:

to check that Pp1q holds (that is, to check that Ppnq is true when n “ 1);

then

to suppose that we have checked all of the instances Pp1q,Pp2q, . . . , up
to Ppkq for some k ě 1,

and

to show that the next instance Ppk ` 1q must then also be true.

We then conclude that Ppnq is true for all ně 1.

57.

(a)(i) 0, 2, 3, 10, 24, 65, 168, . . .

(ii) Guess:
Fn´1Fn`1 “ F 2

n ` p´1qnF1, for all n ě 1.

Proof : By part (i), this identity holds for n “ 1, 2, 3, 4, 5, 6, 7.

Suppose we have checked it as far as the kth instance:

Fk´1Fk`1 “ F 2
k ` p´1qkF1.

Then the next instance follows, since

Fpk`1q´1Fpk`1q`1 “ FkFk`2

“ pFk`1 ´ Fk´1qpFk ` Fk`1q

“ F 2
k`1 ` pFk`1Fk ´ Fk´1Fkq ´ Fk´1Fk`1

“ F 2
k`1 ` pF

2
k ´ Fk´1Fk`1q

“ F 2
k`1 ` p´1qk`1F1.

So we have shown that the identity holds for the first few values of n, and
whenever we know it is true up to the kth identity, it also holds for the
pk ` 1qth identity. Hence the identity holds for all n ě 1. QED

(b)(i) We suppose that
b

a
ă
d

c

(if the inequality is reversed, the expression for the area is multiplied by
“´1”).
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The lines x “ 0, y “ 0, x “ a ` c, y “ b ` d form a rectangle of area
pa` cqpb` dq, which surrounds the parallelogram.

To get from this to the area of the parallelogram, we must subtract

∗ the two external corner rectangles (top left, and bottom right) – each of
area bc; and

∗ the four external right angled triangles–which fit together in pairs to make
rectangles of areas ab and cd. Hence

areapOABCq “ pa` cqpb` dq ´ 2bc´ ab´ cd “ ad´ bc.

(ii) 1

(iii) Half of the 2nd parallelogram is equal to half of the 1st – so both have the
same area, namely 1.

Half of the 3rd parallelogram is equal to half of the 2nd – so they both have
the same area, namely 1.

And so on. Hence the area of the nth parallelogram is equal to

|ad´ bc| “ |Fn´1Fn`1 ´ F
2
n | “ 1.

Part (a)(ii) is more precise in that it says that Fn´1Fn`1 ´ F
2
n “ p´1qn: this says

that the relative positions of the generators pa, bq, pc, dq for successive Fibonacci
parallelograms alternate, with first b

a
ą d

c
, and then b

a
ă d

c
. (In fact the gradient

of successive versions of the line OA, or the ratio of successive Fibonacci numbers,
converges to the Golden Ratio τ , with successive Fibonacci points A “ pFn´1, Fnq
alternately above and below the line with equation y “ τx.)

58.

(a) 1, 2, 5, 13, 34, . . .

(b) Guess:
F 2
n´1 ` F

2
n “ F2n´1.

Note: When part (a) gives rise unexpectedly to “the odd-numbered terms
of the Fibonacci sequence”, it is almost impossible to believe that this is an
accident. Yet the attempt to prove that this “Guess” is correct may well prove
elusive – for it is hard to see how to relate the pn ´ 1qth and nth terms to the
p2n´ 1qth term.

One approach is to

“try to prove something stronger than what seems to be required”.

Claim: For each n ě 1, both of the following are true:

F 2
n´1 ` F

2
n “ F2n´1 and F 2

n`1 ´ F
2
n´1 “ F2n.

Proof : We have already checked that the first relation holds for n “ 1, 2, 3, 4, 5.

And it is easy to check that

F 2
1`1 ´ F

2
1´1 “ 1´ 0 “ 1 “ F2,

F 2
2`1 ´ F

2
2´1 “ 4´ 1 “ 3 “ F4,

F 2
3`1 ´ F

2
3´1 “ 9´ 1 “ 8 “ F6.
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So both identities hold for the first few values of n.

Now suppose we have checked that both relations hold all the way up to the
kth pair of relations.

Then simply adding the two relations in the kth pair gives the first relation of
the next pair:

F 2
k ` F

2
k`1 “ pF 2

k´1 ` F
2
k q ` pF

2
k`1 ´ F

2
k´1q

“ F2k´1 ` F2k

“ F2k`1

To see that the second relation of the next pair also follows, consider

F 2
k`2 ´ F

2
k “ pFk ` Fk`1q

2
´ F 2

k

“ F 2
k`1 ` 2FkFk`1

“ pF 2
k`1 ´ F

2
k´1q ` F

2
k´1 ` 2FkFk`1

“ F2k ` pFk`1 ´ Fkq
2
` 2FkFk`1

“ F2k ` pF
2
k`1 ` F

2
k q

“ F2k ` F2k`1

“ F2k`2.

So we have shown

– that the identities hold for the first few values of n, and

– that whenever we know the kth pair of identities hold, the pk` 1qth pair also
hold.

Hence the two identities hold for all n ě 1. QED

59.

(a)(i) 0, 5, 8, 26, 63, . . .

(ii) Guess: Fn´2Fn`2 “ F 2
n ` p´1qn`1.

Proof : By part (i), this identity holds for n “ 2, 3, 4, 5, 6.

Suppose we have checked it as far as the kth instance:

Fk´2Fk`2 “ F 2
k ` p´1qk`1.

Then the next instance follows using 57, since

Fpk`1q´2Fpk`1q`2 “ Fk´1Fk`3

“ Fk´1pFk`1 ` Fk`2q

“ Fk´1Fk`1 ` Fk´1Fk`2

“ F 2
k ` p´1qk ` pFk`1 ´ FkqpFk ` Fk`1q

“ p´1qk ` F 2
k`1.

(b)(i) 0, 13, 21, 68, . . .
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(ii) Guess:
Fn´3Fn`3 “ F 2

n ` p´1qn`3´1F 2
3 .

This suggests that we should reinterpret our previous guesses, and that the
“correction terms” on the RHS:

∗ in Problem 57(a) should have been written as “p´1qn`0´1F 2
0 ”,

∗ in Problem 57(a)(ii) should have been written as “p´1qn`1´1F 2
1 ”, and

∗ in Problem 59(a)(ii) should have been written as “p´1qn`2´1F 2
2 ”.

We leave the proof (or otherwise) of this conjecture as an exercise for the
reader.

60.

(i) 10%

(ii) 21% – notice that

p1.1aqp1.1bq “ p1` 0.1q2ab “ p1` 0.2` 0.01qab “ 1.21ab.

(iii) 0% – notice that
1.1a

1.1b
“
a

b
.

61. If x is doubled in the expression “x”, then the value of the expression doubles.

If y is doubled in the expression x˜ y, then the value of the expression is halved.

If z is doubled in the expression x ˜ py ˜ zq, then the bracket is halved, and the
expression is doubled.

Replacing “x, y, z” by “d, e, f“ we see that, if the value of f is doubled, the value
of the bracket pd˜ pe˜ fqq is also doubled.

If we now take x “ b, y “ c, z “ pd ˜ pe ˜ fqq, then, when f is doubled, z is
doubled, and the value of pb˜ pc˜ pd˜ pe˜ fqqqq is doubled.

Hence the value of the whole expression

a˜ pb˜ pc˜ pd˜ pe˜ fqqqq

is halved.

62.

(a) The fact that one can add the entries in any order depends on the commutative
and associative laws of addition. Expressing the subtotal in the second row as
2p1` 2` 3` 4q uses the distributive law. And expressing the overall sum

p1` 2` 3` 4q ` 2p1` 2` 3` 4q ` 3p1` 2` 3` 4q ` 4p1` 2` 3` 4q

as p1` 2` 3` 4q2 uses the distributive law again.

(b)(i) 1 “ 13, 8 “ 23, 27 “ 33, 64 “ 43.

(ii) p4`8`12`16q`p12`8`4q “ 4T4`4T3. Similarly, the kth reverse L-shape
has sum

k ¨ Tk ` k ¨ Tk´1 “
1

2
k2pk ` 1q `

1

2
k2pk ´ 1q “ k3.
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Hence

Cn “ 13
` 23

` 33
` ¨ ¨ ¨ ` n3

“ p1` 2` 3` ¨ ¨ ¨ ` nq2 “
1

4
¨ n2
pn` 1q2..

63.

(a) The terms are 1 ˆ 2, 2 ˆ 3, 3 ˆ 4, etc,; so the rth term is r(r+1), and the last
term is pn´ 1qppn´ 1q ` 1q.

The rth term can be expressed as “r2 ` r”, so the sum

1ˆ 2` 2ˆ 3` 3ˆ 4` ¨ ¨ ¨ ` rpr ` 1q ` ¨ ¨ ¨ ` pn´ 1qn

can be expressed as

p12
` 22

` 32
` ¨ ¨ ¨ ` pn´ 1q2q ` p1` 2` 3` ¨ ¨ ¨ ` pn´ 1qq “ Sn´1 ` Tn´1.

(b)(i) ∗ n “ 2: 6 “ 1ˆ 2ˆ 3.

∗ n “ 3: 6` 18 “ 24 “ 2ˆ 3ˆ 4.

∗ n “ 4: 6` 18` 36 “ 60 “ 3ˆ 4ˆ 5.

Guess: 3pSn´1 ` Tn´1q “ pn´ 1qnpn` 1q.

Proof : This is true for n “ 1, 2, 3, 4.

Suppose we have checked the claim for all values up to

3pSk´1 ` Tk´1q “ pk ´ 1qkpk ` 1q.

Then

3pSk ` Tkq “ 3prSk´1 ` k
2
s ` rTk´1 ` ksq

“ pk ´ 1qkpk ` 1q ` 3kpk ` 1q

“ kpk ` 1qpk ` 2q.

Hence our guess is true for all n ě 1.

(ii)

Sn ` Tn “
npn` 1qpn` 2q

3
,

so

Sn “
npn` 1qpn` 2q

3
´ Tn “

npn` 1qp2n` 1q

6
.

64. If one tries to apply the usual algorithms for decimals, then one is likely to
get in something of a mess. But if we re-interpret each decimal as a fraction, then
things are much easier.

(a) 5
9
` 6

9
“ 11

9
“ 1.22222 ¨ ¨ ¨ .

(b) 0.99999 ¨ ¨ ¨ “ 9
9
“ 1; 1` 1

9
“ 1.11111 ¨ ¨ ¨ .

(c) 10
9
´ 2

9
“ 8

9
“ 0.88888 ¨ ¨ ¨

(d) 1
3
ˆ 2

3
“ 2

9
“ 0.22222 ¨ ¨ ¨ .

(e) 11
9
ˆ 9

11
“ 1.
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65.

(a) Such a decimal is by definition equal to the fraction with numerator

bnbn´1 ¨ ¨ ¨ b1b0b´1b´2 ¨ ¨ ¨ b´k

(an integer with n` k ` 1 decimal digits) and with and denominator 10k.

(b) If p
q

is equivalent to a fraction with numerator

m “ bnbn´1 ¨ ¨ ¨ b1b0 base 10

and denominator 10k, then m has decimal representation

bnbn´1 ¨ ¨ ¨ bk.bk´1 ¨ ¨ ¨ b1b0.

(c) Parts (a) and (b) show that fractions p
q

with HCF pp, qq “ 1, whose
decimals terminate are precisely those which are equivalent to fractions having
denominator a power of 10: that is, those for which the denominator q is a factor
of some integer of the form 10k “ 2k ˆ 5k.

(d) If q does not divide some power of 10, then its decimal does not terminate.
Hence, when carrying out the division of p by q we never get remainder 0. So
the only possible remainders are 1, 2, . . . , q ´ 1. The first remainder after the
decimal point is equal to p pmod qq). In the ensuing q decimal places, there are
just q ´ 1 distinct possible remainders, so some remainder (say rq must occur
for the second time by the qth step, and the outputs (and remainders) thereafter
will then be the same as they were the first time that the remainder r occurred.

(e) Suppose d has a decimal with a repeating block of length b starting in the pk`1qth

decimal place. (e.g. d “ 1234.567890909090909090 ¨ ¨ ¨ has b “ 2, k “ 4).
Then the infinite decimal tails cancel when we subtract M “ 10bd´ d, and the
difference M becomes an integer N if we multiply by 10k: N “M ˆ10k. Hence
dp10b ´ 1q10k “ N , and d is equal to a fraction with denominator p10b ´ 1q10k.

66.

(a) (i) 1
27

; (ii) 10
27

; (iii) 19
27

(b) (i) a
9
; (ii) ab

99
; (iii) abc

999

67.

(a) 0.166666 ¨ ¨ ¨ (block length 1); 0.833333 ¨ ¨ ¨ (block length 1)

(b) All have block length 6:

0.142857142857142857 ¨ ¨ ¨ ;
0.285714285714285714 ¨ ¨ ¨ ;
0.428571428571428571 ¨ ¨ ¨ ;
0.571428571428571428 ¨ ¨ ¨ ;
0.714285714285714285 ¨ ¨ ¨ ;
0.857142857142857142 ¨ ¨ ¨ .

Note: The repeating blocks are all cyclically related: e.g. the block for 2
7

is the
same as for 1

7
, but starting at “2” instead of at “1”.
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(c) All have block length 2:

0.090909 ¨ ¨ ¨ ; 0.181818 ¨ ¨ ¨ ; 0.272727 ¨ ¨ ¨ ; 0.363636 ¨ ¨ ¨ ; 0.454545 ¨ ¨ ¨ ;

0.545454 ¨ ¨ ¨ ; 0.636363 ¨ ¨ ¨ ; 0.727272 ¨ ¨ ¨ ; 0.818181 ¨ ¨ ¨ ; 0.909090 ¨ ¨ ¨ .

Note: The repeating blocks are not all cyclically the same, but fall into five
pairs:

– 1
11

and 10
11

are cyclically related;

– as are those for 2
11

and 9
11

;

– and those for 3
11

and 8
11

;

– and those for 4
11

and 7
11

;

– and those for 5
11

and 6
11

.

(d) All have block length 6.

Note: They fall into two families of six, where each family is cyclically related :

1
13
“ 0.076923076923076923 ¨ ¨ ¨ ,

3
13
“ 0.230769230769230769 ¨ ¨ ¨ ,

4
13
“ 0.307692307692307692 ¨ ¨ ¨ ,

9
13
“ 0.692307692307692307 ¨ ¨ ¨ ,

10
13
“ 0.769230769230769230 ¨ ¨ ¨ ,

12
13
“ 0.923076923076923076 ¨ ¨ ¨ ;

and

2
13
“ 0.153846153846153846 ¨ ¨ ¨ ;

5
13
“ 0.384615384615384615 ¨ ¨ ¨ ,

6
13
“ 0.461538461538461538 ¨ ¨ ¨ ,

7
13
“ 0.538461538461538461 ¨ ¨ ¨ ,

8
13
“ 0.615384615384615384 ¨ ¨ ¨ ,

11
13
“ 0.846153846153846153 ¨ ¨ ¨ .

68.

(a) Does not recur. (If it did, it would have a recurring block of length b say. But by
the time the counting sequence 1, 2, 3, . . . reaches 102b the decimal will contain
a periodic block of 2b zeros, so the recurring block must consist of 0s, in which
case the decimal terminates.)

(b) Does not recur. (Similar to part (a).)

(c) Does not recur. (If it did recur, then
?

2 would be a rational number: see
Problems 267, 268, 270.)

69. Claim Decimal fractions have two decimal representations. All other numbers
have exactly one decimal representation.

Proof: Every “decimal fraction” (that is, any fraction which can be written with
denominator a power of 10) has two representations – one that terminates and one
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that ends with an endless string of 9s: if the last non-zero digit of the terminating
decimal is k, then the second representation of the same number is obtained by
changing the “k” to “k ´ 1” and following it with an endless string of 9s.

Consider an unknown number with two different decimal representations α and β.
Since they are “different”, α and β must differ in at least one position. Suppose
the first, or left-most, position in which they differ is that in the kth decimal place
(corresponding to 10´k), and that the two digits in that position are ak (for α)
and bk (for β).

We may suppose that ak ă bk. Then bk “ ak ` 1 (otherwise bk ´ ak ą 1, and
β ´ α ą 10´k, so α ‰ β).

Moreover, since β is not larger than α, the digits following bk must all be equal to
0, and the digits following ak must all be equal to 9. QED

70. In case (d), A only has to choose a recurring block (such as “55555 ¨ ¨ ¨ ”, or
“090909 ¨ ¨ ¨ ”, or “123123123 ¨ ¨ ¨ ”) for his/her positions – no matter where they are.
B’s control terminates at some stage, after which A’s recurring block guarantees
that the resulting number is rational.

The other parts all offer a guaranteed strategy for B. Let the positions chosen by
B be numbered

n1, n2, n3, n4, . . . , nk, . . . .

Now exploit the fact that the positive rationals are countable – that is, can be
included in a single list. To see this we can use Cantor’s (1845–1918) diagonal
enumeration

0

1
;

1

1
;

1

2
,

2

1
;

1

3
,

3

1
;

1

4
,

2

3
,

3

2
,

4

1
;

1

5
,

5

1
;

1

6
,

2

5
,

3

4
,

4

3
,

5

2
,

6

1
;

1

7
, . . . ,

which lists all rationals p
q

with HCF pp, qq “ 1

• first those with p` q “ 1,

• then those with p` q “ 2,

• then those with p` q “ 3,

and so on.

All B needs to do is to make sure that the resulting decimal is not the decimal of
any number in this list, and s/he can do this by choosing a digit in the nth

k position
which is different from the digit which the kth rational in the above list has in that
position. The resulting real number is then different from every number in the list
– and hence must be irrational.

71.

(a) 101 010 (in each column (i) 0` 0 “ 0, (ii) 1` 0 “ 1, (iii) 1` 1 “ “0 and carry
1”).

(b) (i) 1 010 100 (ii) 101 010 (iii) 101 010

(c) 2
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Note: Trying to do this should make it clear how easily we confound “the
fourteenth positive integer” with its familiar base 10 representation. It takes time
and effort to learn to see “14base 10” as “2ˆ 7”, and “21base 10” as 3ˆ 7, and hence
to spot the common multiple “42base 10”. In base 2 the same numbers evoke no
such familiar echoes.

72. Let N “ pakak´1 ¨ ¨ ¨ a1a0qbase 2.

(i) N is divisible by 2 precisely when the units digit a0 is equal to 0.

(ii) N is divisible by 3 precisely when the alternating sum

“a0 ´ a1 ` a2 ´ a3 ` ¨ ¨ ¨ ˘ ak”

is divisible by 3.

Proof

N “ pakak´1 ¨ ¨ ¨ a1a0qbase 2

“ 2kak ` 2k´1ak´1 ` ¨ ¨ ¨ ` 2a1 ` a0.

For each odd suffix m, increase the coefficient 2m by 1: then

2m ` 1 “ p2` 1qp2m´1
´ 2m´2

` ¨ ¨ ¨ ´ 2` 1q

has 3 as a factor.

For each even suffix m “ 2n, decrease the coefficient by 1: then

22n
´ 1 “ p22

´ 1qp22n´2
` 22n´4

` ¨ ¨ ¨ ` 22
` 1q

has 3 as a factor.

Hence

N “ 2kak ` 2k´1ak´1 ` ¨ ¨ ¨ ` 2a1 ` a0

“ pmultiple of 3q ` pa0 ´ a1 ` a2 ´ ¨ ¨ ¨ ˘ akq.

(iii) N is divisible by 4 precisely when the last two digits a1 and a0 are both equal
to 0.

(iv) N is divisible by 5 precisely when the alternating sum

“a1a0”´ “a3a2”` “a5a4”´ ¨ ¨ ¨

is divisible by 5.

Proof :

N “ pakak´1 ¨ ¨ ¨ a1a0qbase 2

“ 2kak ` 2k´1ak´1 ` ¨ ¨ ¨ ` 2a1 ` a0

“ p2a1 ` a0q ` 22
p2a3 ` a2q ` 24

p2a5 ` a4q ` ¨ ¨ ¨

“ p22
` 1qp2a3 ` a2q ` p2

4
´ 1qp2a5 ` a4q ` ¨ ¨ ¨

`rp2a1 ` a0q ´ p2a3 ` a2q ` p2a5 ` a4q ´ ¨ ¨ ¨ s

“ pa multiple of 5q ` r“a1a0”´ “a3a2”` “a5a4”´ ¨ ¨ ¨ s.
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73.

(a) To weigh an object with weight 1, we must have w0 “ 1.

To weigh an object with weight 2, we must have w1 “ 2. We can then weigh
any object of weight 3, but not one of weight 4.

(i) Now assume each positive weight w can be balanced in exactly one way. Then
we cannot have w2 “ 3, so w2 “ 4.

Suppose that, continuing in this way, we have deduced that wi “ 2i for each
i “ 0, 1, 2, . . . , k.

Then the binary numeral system reveals precisely that every weight w from
0 up to

2k`1
´ 1 “ 1` 2` 22

` ¨ ¨ ¨ ` 2k

can be uniquely represented, but 2k`1 cannot. Hence

wk`1 “ 2k`1.

The result follows by induction.

(ii) If the representation of each integer is not unique, then the sequence

w0, w1, w2, . . .

need not include the powers of 2. For example, it could begin

1, 2, 3, 5, . . .

(b) If each integer w is to be weighed in this way, then w has to be represented in
the form

w “ a1w1 ` a2w2 ` a3w3 ` ¨ ¨ ¨

where each coefficient ai “ 0 (if the weight wi is not used to weigh w), or “ 1
(if the weight wi is used to balance w), or “ ´1 (if the weight wi is used to
supplement w).

If each representation is to be unique, then one can prove as in (a)(i) that the
sequence of weights must be the successive powers of 3.

74. Write m in “base 2”:

m “ pan´1 ¨ ¨ ¨ a1a0qbase 2
,

where each ak “ 0 or 1. Then

m

2n
“
a0
2n
`

a1
2n´1

` ¨ ¨ ¨ `
an´1

2
.

That is,
m

2n
“ p0.an´1 ¨ ¨ ¨ a1a0qbase 2

.

75. We give an example, starting with N “ 110 111 001base 2
.

Write N , and pair off the digits, starting at the units digit.



2.10. Chapter 2: Comments and solutions 89

1 } 10 } 11 } 10 } 01

The left-most digit stands for 28, so the square root is at least 24 (and less than
25). Hence the required square root has five digits (one for each “pair” of digits of
N), and starts with a 1.

Root 1 } ? } ? } ? } ?

[We can also see that the final units digit will have to be a “1”. But this is not the
time to add such information.]

Let x “ 10 000, and subtract x2 “ 100 000 000 from N :

1 00 00 00 00
} 10 } 11 } 10 } 01

This residue has to be equal to “2xy ` y2”. However, as with long division, our
immediate interest is in determining the next digit of our “partial square root”.

If the next digit is a 1 (contributing 23), then 2xy ě 28, which would spill over
and change the digit we have already determined. Hence the next digit is a 0.

Root 1 } 0 } ? } ? } ?

So we can again let x “ 10 000 giving the same remainder, which has to be equal
to “2xy ` y2”, but this time y ă 23 has at most three digits.

The remainder
} 10 } 11 } 10 } 01

is greater than 27, so y ě 22 and the next digit must be a “1”.

Root 1 } 0 } 1 } ? } ?

Now let x “ 10 100, and subtract x2 “ 110 010 000 from N , leaving

} 10 } 10 } 01

This residue has to equal 2xy ` y2, with x “ 10 100.

If the next digit in the square root is 1, then 2xy ě 26
ą 101 001 “ 2xy ` y2.

Hence the next digit is 0, and the last digit is then 1.

Hence the required square root is equal to:

Root 1 } 0 } 1 } 0 } 1

76.

(b)(i) The fact that
n1 “ p1 ` 1

says that
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“n1 is equal to a multiple of p1 with remainder “ 1”.

(c)(i) The fact that
n2 “ p1 ˆ p2 ` 1

says that

“n2 is equal to a multiple of p1 with remainder “ 1”,

and that

“n2 is equal to a multiple of p2 with remainder “ 1”.

Hence neither p1 nor p2 are factors of n2.

(d) The fact that
nk “ p1 ˆ p2 ˆ ¨ ¨ ¨ ˆ pk ` 1

says that

“nk is equal to a multiple of pi with remainder “ 1”

for each suffix i, 1 ď i ď k. Hence none of the primes p1, p2, p3, . . . , pk is a factor
of nk.

So the smallest prime factor of nk always gives us a new prime pk`1.

(e) If we start with p1 “ 2, then n1 “ p1 ` 1 “ 3, so p2 “ 3.

Then n2 “ p1 ˆ p2 ` 1 “ 7, so p3 “ 7.

Then n3 “ p1 ˆ p2 ˆ p3 ` 1 “ 43, so p4 “ 43.

Then n4 “ p1 ˆ p2 ˆ p3 ˆ p4 ` 1 “ 1807 “ 13ˆ 139, so p5 “ 13.

77.

(a) We write rxs for the “first integer ě x”. Then

πpre1sq “ πp3q “ 2;

πpre2sq “ πp8q “ 4;

πpre3sq “ πp21q “ 8;

πpre4sq “ πp55q “ 16;

πpre5sq “ πp149q “ 35;

πpre6sq “ πp404q “ 79;

πpre7sq “ πp1097q “ 184;

πpre8sq “ πp2981q “ 429;

πpre9sq “ πp8104q “ 1019.

(b) The initial “doubling” is an accident of small numbers, which soon turns into
“slightly more than doubling”.

The observation that should (eventually) jump out at you concerns the ratio
eN : πpNq, which seems to be surprisingly close to N ´ 1. This suggests the
possible

Conjecture: πpxq „ x
lnpxq´1

(where lnpxq “ logepxq).



III. Word Problems

All the evidence suggests that
the shapes of reality

are mathematical.
George Steiner (1929– )

The previous chapter focused on aspects of the arithmetic of pure numbers
– mostly without any surrounding context. However, our mathematical
experience does not begin with pure numbers. At school level, mathematical
concepts, and the reasoning we bring to understanding and using them, have
their roots in language. And in real life, every application of mathematics
starts out with a situation which is described in words, and which has to be
reformulated mathematically before we can begin to calculate, and to draw
meaningful mathematical conclusions. Word problems play an important, if
limited, role in helping students to appreciate, and to handle the subtleties
involved in

the art of using the mathematics we know
to solve problems given in words.

This art of using mathematics involves two distinct – but interacting
– processes, which we refer to here as “simplifying” and “recognising
structure”.

• To identify the mathematical heart of a problem arising in the real world,
one may first have to simplify – that is, to side-line details that seem
unimportant or irrelevant, and then simplify as much as possible without
changing the underlying problem (e.g. by replacing some awkward feature
by a different quantity which is easier to measure, or by an approximation
which is easier to work with).

This “simplifying” stage is well-illustrated by the tongue-in-cheek title of the
classic textbook Consider a spherical cow . . . by John Harte (1985):

Milk production at a dairy farm was low, so [. . . ] a
multidisciplinary team of professors was assembled. [. . . After]
two weeks of intensive on-site investigation [. . . ] the farmer
received the write up, and opened it to read [. . . ] “Consider
a spherical cow . . . ”.
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The point to emphasise here is that the judgements needed when
“simplifying” are subtle, depend on an understanding of the particular
situation being modelled, and may lead to a model which at first sight seems
to be counterintuitive, but which may not be as silly as it seems – and which
therefore needs to be explained sensitively to non-mathematicians.

In contrast word problems by-pass the “simplifying” stage, and focus
instead on “recognising structure”: they present the solver with a problem
which is already essentially mathematical, but where the inner structure is
contextualised, and is described in words. All the solver has to do is to
interpret the verbal description in a way that extracts the structure just
beneath the surface, and to translate it into a familiar mathematical form.
That is, word problems are designed to develop facility with the process
of “recognising structure”, while avoiding the complication of expecting
students to make modelling judgements of the kind required by the subtler
“simplifying” process.

Because word problems focus on the second process of “recognising
structure”, they tend to incorporate the relevant mathematical structure
isomorphically. The underlying structure still needs to be identified and
interpreted, but the interpretations are likely to be standard, with no need
for imaginative assumptions and simplifications before the structure can be
discerned. For example, if a problem in primary school refers to an unknown
number of “sweets” to be “shared” between six children, then the collection
of “sweets” is isomorphic to a pure number (the number of sweets); and the
act of “sharing” is a thinly veiled reference to numerical division.

The story in a word problem may be a purely mathematical problem in
disguise. But the art of identifying the correspondence between

the data given in the story line, and

the mathematical entities to which they correspond

and between

the actions in the story line, and

the corresponding mathematical operations on those mathematical
entities

is non-trivial, and has to be learned the hard way. The first problem
below illustrates the remarkable variety of instances of even the simplest
subtraction, or difference.

As in Chapters 1 and 2 the “essence of mathematics” is to be found in the
problems themselves. Some discussion of this “essence” is presented in the
text between the problems; but most of the relevant observations are either
to be found in the solutions (or in the Notes which follow many of the
solutions), or are left for readers to extract for themselves.
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3.1. Twenty problems which embody “3´ 1 “ 2”

The answer to every one of the questions in Problem 78 is the same – at
least, as a ‘pure number’. The goal is therefore not to “solve” each problem,
but to distinguish between, and to reflect upon, the different ways in which
the very simple mathematical structure “3 ´ 1 “ 2” turns out to be the
relevant “model” in each case.

Problem 78

(a) I was given three apples, and then ate two of them. How many were left?

(b) A barge-pole three metres long stands upright on the bottom of the canal,
with one metre protruding above the surface. How deep is the water in
the canal?

(c) Tanya said: “I have three more brothers than sisters”. How many more
boys are there in Tanya’s family than girls?

(d) How many cuts do you have to make to saw a log into three pieces?

(e) A train was due to arrive one hour ago. We are told that it is three hours
late. When can we expect it to arrive?

(f) A brick and a spade weigh the same as three bricks. What is the weight
of the spade?

(g) The distance between each successive pair of milestones is 1 mile. I walk
from the first milestone to the third one. How far do I walk?

(h) The arithmetic mean (or average) of two numbers is 3. If half their
difference is 1, what is the smaller number?

(i) The distance from our house to the train station is 3 km. The distance
from our house to Mihnukhin’s house along the same road is 1 km. What
is the distance from the station to Mihnukhin’s house?

(j) In one hundred years’ time we will celebrate the tercentenary of our
university. How many centuries ago was it founded?

(k) In still water I can swim 3 km in three hours. In the same time a log drifts
1 km downstream in the river. How many kilometres would I be able to
swim in the same time travelling upstream in the same river?

(l) December 2nd fell on a Sunday. How many working days preceded the
first Tuesday of that month?4

4 This question is historically correct. In 1946, in the Soviet Union, when these problems
were formulated, Saturday was a working day.
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(m) I walk with a speed of 3 km per hour. My friend is some distance ahead
of me, and is walking in the same direction pushing his broken down
motorbike at 1 km per hour. At what rate is the distance between us
diminishing?

(n) A trench 3 km long was dug in a week by three crews of diggers, all working
at the same rate as each other. How many such crews would be needed to
dig a trench 1 km shorter in the same time?

(o) Moscow and Gorky are cities in adjacent time zones. What is the time in
Moscow when it is 3 pm in Gorky?5

(p) An old ‘rule-of-thumb’ for anti-aircraft gunners stated that: To hit a plane
from a stationary anti-aircraft gun, one should aim at a point exactly three
plane’s lengths ahead of the moving plane. Now suppose that the gun was
actually moving in the same direction as the plane with one third of the
plane’s speed. At what point should the gunner aim his fire?

(q) My brother is three times as old as I am. How many times my present
age was his age when I was born?

(r) I add 1 to a number and the result is a multiple of 3. What would the
remainder be if I were to divide the original number by 3?

(s) It takes 1 minute for a train 1 km long to completely pass a telegraph
pole by the track side. At the same speed the train passes right through
a tunnel in 3 minutes. What is the length of the tunnel?

(t) Three trams operate on a two-track route, with trams travelling in one
direction on one track and returning on the other track. Each tram
remains a fixed distance of 3 km behind the tram in front. At a particular
moment one tram is exactly 1 km away from the tram on the opposite
track. How far is the third tram from its nearest neighbour? 4

3.2. Some classical examples

Problem 79 Katya and her friends stand in a circle in such a way that the
two neighbours of each child are of the same gender. If there are five boys
in the circle, how many girls are there? 4

Problem 80 How much pure water must be added to a vat containing 10
litres of 60% solution of acid to dilute it into a 20% solution of acid? 4

5 Gorky (now the city of Nizhny Novgorod) lies to the east of Moscow.
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Problem 81 A mother is 2 1
2 times as old as her daughter. Six years ago

the mother was 4 times as old as her daughter. How old are mother and
daughter? 4

Problem 82

(a) Tom takes 2 hours to complete a job. Dick takes 3 hours to complete the
same job. Harry takes 4 hours to complete the same job. How long would
they take to complete the job, all working together (at their own rates)?

(b) Tom and Dick take 2 hours to complete a job working together. Dick
and Harry take 3 hours to complete the same job. Harry and Tom take 4
hours to complete the same job. How long would they take to complete
the same job, all working together? 4

Problem 83 A team of mowers had to mow two fields, one twice as large
as the other. The team spent half-a-day mowing the larger field. After that
the team split: one half continued working on the big field and finished it by
evening; the other half worked on the smaller field, and did not finish it that
day – but the remaining part was mowed by one mower in one day. How
many mowers were there? 4

3.3. Speed and acceleration

Problem 84 Jack and Jill went up the hill, and averaged 2 mph on the
way up. They then turned round and went straight back down by the same
route, this time averaging 4 mph. What was their average speed for the
round trip (up and down)? 4

Problem 85

(a)(i) A cycling road race requires one to complete 3 laps of a long road circuit.
On the first lap I average 40 km/h; on the second lap I average 30 km/h;
and on the third lap I only average 20 km/h. What is my average speed
for the whole race?

(ii) I cycle for 3 hours round the track of a velodrome, averaging 40 km/h
for the first hour, 30 km/h for the second hour, and 20 km/h for the
final hour. What is my average speed over the whole 3 hours?

(b) Two cyclists compete in an endurance event.
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(i) The first cyclist pedals at 60 km/h for half the time and then at 40
km/h for the other half. The second cyclist pedals at 60 km/h for half
of the total distance and then at 40 km/h for the remaining half. Who
wins?

(ii) In a two hour event, the first cyclist pedals at u km/h for the first hour
and then at v km/h for the second hour. The second cyclist pedals at u
km/h for half of the total distance and then at v km/h for the remaining
half. Who wins?

(c)(i) Apply your argument in (b)(ii) to prove an inequality between

∗ the arithmetic mean
u` v

2

of two positive quantities u, v, and

∗ the harmonic mean
2

1
u `

1
v

.

(ii) Give a purely algebraic proof of your inequality in (i). 4

Problem 86 A train started from a station and, moving with a constant
acceleration, covered a distance of 4 km, finally reaching a speed of 72
km/hour. Find the acceleration of the train, and the time taken for the
4 km. 4

Problem 87 (Average speed of an accelerating car) A typical car
(and maybe also a typical train!) does not move with constant acceleration.
Starting from a standstill, a car moves through the gears and “accelerates
more quickly” in lower gears, when travelling at lower speeds, than it does
in higher gears, when travelling at higher speeds. Use this empirical fact to
prove that the average speed of a car accelerating from rest is more than half
of its final measured speed after the acceleration. 4

3.4. Hidden connections

Problem 88 Two old women set out at sunrise and each walked with a
constant speed. One went from A to B, and the other went from B to A.
They met at noon, and continuing without a stop, they arrived respectively
at B at 4 pm and at A at 9 pm. At what time was sunrise on that day? 4
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Problem 89 A paddle-steamer takes five days to travel from St Louis to
New Orleans, and takes seven days for the return journey. Assuming that
the rate of flow of the current is constant, calculate how long it takes for a
raft to drift from St Louis to New Orleans. 4

Problem 90 [From Paolo dell’Abbaco’s Trattato d’aritmetica] “From here
to Florence is 60 miles, and there is one who walks it in 8 days [in one
direction], another in five days [in the opposite direction]. It is asked:
Departing at the same time, in how many days will they meet?” 4

Problem 91 Notice that in Problem 88 sunrise occurs t “
?

4ˆ 9 hours
before noon, and that

?
4ˆ 9 is the geometric mean of 4 and 9. Once this

is pointed out, can you reformulate your solution to Problem 88 to solve a
more general problem? 4

3.5. Chapter 3: Comments and solutions

78.

(a) This is the simplest form of all: 3 are given; 2 are removed; so what remains is
“3´ 2”.

(b) Length is a continuous quantity (rather than discrete quantity – like apples,
or sweets). So we have to perceive a line segment (partially hidden beneath
the water) rather than a quantity. We know the total length of the pole, and
the length of the protruding portion. We can then infer the hidden length by
subtraction.

Note: This kind of “geometrical subtraction” is needed in many contexts (such
as: proving the general formula

1

2
pbaseˆ heightq

for the area of a triangle, or showing that the area of the parallelogram spanned
by the origin and vectors pa, bq, pc, dq is |ad´ bc|, or in Euclid’s Elements, Book
I, Proposition 2). The idea can be strangely elusive.

(c) The situation here is significantly different. We start with Tanya’s brothers and
sisters, and finish with the related, but different, notion of “boys and girls in
Tanya’s family”. The “3” does not represent anything specific: it is a numerical
excess (of Tanya’s brothers over her sisters). In contrast, the “1” seems to
represent Tanya herself, who needs to be taken into account when we switch
from the initial scenario (Tanya’s brothers and sisters) to the final question
about “boys and girls in Tanya’s family”.
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(d) No doubt this can be solved by drawing a picture in which the underlying
structure is only appreciated superficially. But beneath the surface, it seems to
be a much more abstract representation of “3´1 “ 2”. The “3” certainly stands
for the “three pieces”. But the operation “´1” is not obviously subtracting
anything.

The relevant observation is simply that, starting from one end, pieces and cuts
alternate. So if we ignore the starting end, there must be the same number of
pieces and cuts – except that if we start with a log (rather than a long tape from
which we are cutting off pieces), the “last cut” is “the other end of the log”,
which has already been cut – so does not need to be cut again, and this obliges
us to subtract 1 from the number of pieces to get the number of additional cuts.

Note: This idea arises in many settings, and is sometimes referred to as “Posts
and gaps”. Sometimes one has to “subtract 1” as here; at other times one has to
“add 1” (e.g. when counting the number of “posts”, if we are given the number
of “gaps”, or “fence panels”).

(e) Once again we are dealing with a continuous quantity – time. On this occasion
the problem invites us to construct a (horizontal?) diagram very like the pole
and the water in (b). But this time, the origin is likely to be perceived as “now”,
with a time-line stretching back 1 hour (to the left?) to mark the time when
the train was due, and then moving on 3 hours (to the right), passing through
the origin to a point 2 hours from now.

(f) It is unclear how young children might tackle this with “bare hands”. However,
at some stage one would like them to see the words as evoking the powerful (and
rather different) underlying image of “scales”, or an imagined “equation”. Once
one ‘sees’ the two pans of a balance, with a “brick and a spade” on one side being
balanced by “three bricks” on the other, one can imagine removing “1 brick”
from each pan to be left with the spade on its own balanced by “3 ´ 1 “ 2”
bricks.

(g) This is in some ways a simpler version of “Posts and gaps”. However, there
is an additional step – since we are no longer merely counting the gaps, but
translating this counting number into a distance. In this instance, if one does
not pay too much attention to the extra step, both give an answer “2”.

Note: The impact of the extra step (switching from discrete counting number
to continuous distance) can be seen more clearly in the number of errors made
when students are faced with such variations as:

“There are ten lamp posts in my street, and they are 70 metres apart.
How far is it from the first to the last?”

(h) One suspects that this superficially simple problem would prove inaccessible
unless pupils have learned to represent word problems diagrammatically, or
have already mastered simple algebra. The “3” and the “1” do not represent
real-world entities; so one has to be prepared to mark a “3” on a number line,
and to interpret “average” as indicating that the two unknown quantities lie
equally spaced either side of it. “Half their difference” is then staring one in the
face, and the smaller number (to the left) is clearly “3´ 1”.
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Note: This may look rather like the overdue train in part (e). We suggest that
it is significantly different.

(i) The story line clearly adds layers of difficulty which we tend to overlook.
Learning to “recognise structure” and to translate words into a form that
allows one to calculate is clearly a non-trivial (and neglected) art. Distances
in kilometres may convey something more active than the given “length of a
barge pole” in part (b), or the reported times in part (e), even if the diagram
– once constructed – is very similar (provided of course that “along the same
road” is interpreted as meaning “in the same direction”).

Note: Consider the following item from an authoritative international study
TIMSS 20116 for pupils aged around 14:

“Points A, B, and C lie in a line and B is between A and C. If AB “ 10
cm and BC “ 5.2 cm, what is the distance between the midpoints of
AB and BC?

A 2.4 cm B 2.6 cm C 5.0 cm D 7.6 cm”

The question is a multiple choice question, and the options represent different
ways of failing to translate the words into a suitable diagram, or to interpret
them correctly. The sampling (in around 50 countries) was done very carefully.
So the different success rates in different countries (of which 5 are given below)
suggest that some systems give far too little attention to helping pupils to learn
the relevant underlying art:

Russia 60%, Hungary 41%, Australia 40%, England 38%, USA 29%

(j) The story line here has a different flavour. The time-line is the reverse of the
overdue train in part (e), yet the measuring in centuries may make the question
less immediately accessible. It may be harder to “feel” a natural interpretation,
and so success may be more dependent on a willingness to represent the given
information abstractly.

(k) Up to now, all problems were either static, or involved motion in a directly
accessible form. Here we meet for the first time the need to interpret the words
in terms of “relative motion”. I may get as far as picturing myself swimming
upstream in the river (against the current); but neither the “3” nor the “1”
have any direct relevance to me at that time: they have to be imagined (as
“me swimming in still water”, and “the effect of the river in slowing me down”),
and then interpreted in a way that allows a simple calculation.

(l) The words need to be interpreted from a very different kind of story line: if
the 2nd is on a Sunday, then the “first Tuesday” must be the 4th. There are
therefore “3” days preceding the first Tuesday – of which just “1” (Sunday) is
not a working day. All that is needed is “counting”; but the wording requires a
different kind of interpretation.

6 Trends in International Mathematics and Science Study, https://timssandpirls.bc.edu/
timss2011/index.html

https://timssandpirls.bc.edu/timss2011/index.html
https://timssandpirls.bc.edu/timss2011/index.html
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(m) This is another example of “relative velocities” – but the need for subtraction
no longer arises because of travel in opposite directions. In some ways it is
simpler than (k); yet the final question relates to something less tangible –
namely the “rate at which the distance between us is diminishing”. Before one
understands relative velocities, one has to choose to focus on “what happens
during each hour”, where I cover 3 km and my friend covers only 1 km, with the
difference “3 ´ 1” measuring nothing tangible, but being the amount by which
our separation decreases during that hour.

(n) Here it is even more important to translate the given information about “rates”
into concrete form. “In the same time” should trigger the questions: “How many
crews would be needed for p3 ´ 1q km?”, which may then trigger the question:
“How long a ditch could 1 crew dig in the same time?”. Whatever approach is
taken, it is worth asking “If the answer is “3´ 1”, what exactly is the “3”? And
what is the “1”?”

(o) This does presume a degree of fluency in “modelling” the given information (e.g.
knowing that “adjacent time zones” almost always differ by 1 hour, and that the
Earth’s rotation is from West to East, so that the Sun “rises” first in the East).
On the surface, if the “3” is interpreted as the “3” in 3 pm, then the calculation
“3´ 1” is an adjustment, rather than a strict subtraction (the 3 pm and the “1
hour time difference” are not really comparable quantities with which one can
do arithmetic). At a deeper level one can turn both the “3” and the “1” into
comparable quantities, and so justify the arithmetic.

(p) Here we face full-on what has been lurking just below the surface of certain
earlier problems (such as (n)) – namely that we are dealing with (approximate)
proportion. We ignore marginal differences in the distance to a distant object
at slightly different angles, and compare on the one hand

distances along the plane’s path (measured in “plane’s lengths”),

and on the other hand

the time taken by the anti-aircraft fire to reach the plane.

This comparison has to be made because of the added complication of the change
in the relative velocity of the gun and the plane.

The given rule of thumb specifies the direction in which a stationary gunner
should aim; and the reported (unrealistically fast, yet presumed to be steady)
motion of the gun introduces a 2-dimensional (vector) version of “swimming
upstream” – which suggests the expected answer “two thirds of 3 plane lengths”,
so that “1” of the “3 plane’s lengths” is compensated by the gun’s motion.

(q) A solution is again dependent on representing the given information in some
form. Whether or not one uses symbols, the wording invites the solver to use
“my present age (in years)” as a preferred unit, and to represent “my brother’s
present age” as “3” of these basic units. The “3´ 1” then represents how much
older he is than I am – and hence how old he was when I was born, or “how
many times my present age he was when I was born”.

Note: The choice of unit may conceal the fact that the question and solution
are rooted in ratio and proportion.
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(r) The subtraction “3 ´ 1” here only makes sense in arithmetic (mod 3), where
“remainder 0 (on division by 3)” and “remainder 3” are in some sense equivalent.
Although the “1” in “3 ´ 1” may be taken to be the “1” that is added to the
original number in the question, the “3” is an invented remainder – which is
interchangeable with “0” when working (mod 3).

(s) In the usual answer “3 ´ 1”, one could argue that the “1” does appear in the
question, but that the “3” does not. Again we are dealing with proportion,
where the times taken (at constant speed) are proportional to lengths, or to
distances travelled. First the given length (1 km) of the train and the given time
(1 minute) in relation to the “pole by the track side” gives a simple constant of
proportion (“ 1), which allows us to translate the time taken into the distance
travelled (and hence to calculate speed). If we re-interpret the “endpoint of
the tunnel” as being just like another “pole by the track side”, then it takes
1 minute for the train to emerge from the tunnel, and hence “3 ´ 1 minutes”
for the front buffers of the train to cover the full length of the tunnel, which is
therefore “p3´ 1q km” long (given that the constant of proportionality “ 1).

(t) It is not clear how to interpret the “3” and the “1” in “3 ´ 1” without getting
one’s hands dirty with the configuration described. In particular, somewhere
along the line one has to interpret the “3 km” separation between trams as
revealing that the total length of the track is 9 km, and hence that each of the
two parallel stretches of track is 4.5 km.

The “tram on the opposite track” is travelling in the opposite direction, is 1 km
away, and is “3 km ahead” (or ”3 km behind”); so one of these trams is 1 km
from the end of the track, and the other is on the other track and 2 km from
one end (travelling in the opposite direction). There are exactly two possible
configurations – each arising from the other if we reverse the direction of travel.
By choosing the direction of travel (or by allowing “negative speed”) we may
assume that tram A is 2 km from the same end of the track and that tram B
in front of it is 1 km beyond the end of the track on the opposite side. Tram C
is 3 km ahead of B, and hence 4 km down that 4.5 km stretch of track (so has
not yet “turned the corner”). Hence it is 1 km closer to its nearest neighbour
(A) than it is to B.

79. If we ignore the first sentence, then there could be zero girls (and five boys).
But the first sentence guarantees that there is at least one girl (“Katya and her
friends”). So boys and girls must alternate, giving rise to 5 girls.

80. The problem requires a degree of “modelling” in that “60% solution of acid”
suggests that the initial ratio

“acid : water” “ 60 : 40.

Hence the initial 10 litres is made up of 4 litres of water and 6 litres of acid. Adding
water does not change the amount of acid; so we want 6 litres to be 20% of the
final mix – which must therefore be 30 litres. Hence we should add 20 litres.

81. The difference in ages is 3
2
ˆ d, where d is the daughter’s age in years. Six

years ago the difference was three times the daughter’s age, which was then d´ 6
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years. Hence

3pd´ 6q “
3

2
ˆ d,

so d “ 12.

82.

Note: Underpinning all such problems is the “unitary method”, which here
comes into its own. It is an essential tool, which is scarcely taught, and not
sufficiently practised. (As a result many students mindlessly translate “Tom takes
2 hours” as “T “ 2”, etc..)

(a) When they all work together we need to know not how long each takes to do
the job, but at what rate each contributor works.

Tom does the job in 2 hours, so works at the rate of “ 1
2

of a job in 1 hour”.

Dick works at a rate of “ 1
3

of a job in 1 hour”, and Harry works at the rate of
“ 1
4

of a job in 1 hour”.

So working together, they can manage

1

2
`

1

3
`

1

4
“

13

12

of a job in 1 hour.

Hence, to complete 1 job they require 12
13

of an hour.

(b) As in part (a), we need to know the rate at which each man works.

Suppose that Tom completes the fraction t of a job in 1 hour, that Dick
completes the fraction d of a job in 1 hour, and that Harry completes the
fraction h of a job in 1 hour.

Then in 1 hour, working together, they complete pt`d`hq jobs; so to complete
1 job takes them

1

t` d` h
hours.

We therefore need to find “t` d` h”.

In 1 hour, Tom and Dick together complete t` d jobs. And we are told that in
2 hours they complete 1 job, so t` d “ 1

2
. Similarly d` h “ 1

3
, and h` t “ 1

4
.

Adding yields

2pt` d` hq “
1

2
`

1

3
`

1

4
,

so

t` d` h “
13

24
.

Hence the time required for Tom, Dick and Harry to finish 1 job working together
is

1

t` d` h
“

24

13

hours.

Note: Alternatively, one might let Tom take T hours to complete 1 job, Dick
take D hours to complete 1 job, and Harry take H hours to complete 1 job.
Then

t “
1

T
, d “

1

D
, h “

1

H
.
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83. Imagine the two fields as strips of equal width – with the larger field twice as
long as the smaller one.

The large strip was completely mowed in two parts:

(i) by the whole team working for the first half day, and

(ii) by half the team working for the second half of the day.

Hence the whole team mowed two thirds of the large field and the half team mowed
the remaining one third.

So the half team, who worked on the smaller field, mowed the equivalent of one
third of the larger field – that is, two thirds of the (half-size) smaller field. Therefore
the remaining one third of the smaller field was mowed by a single man on the
second day.

The previous two thirds of the smaller field (twice as much) was mowed in half a
day (half the time), so must have required 4 (“ four times as many) men. So the
whole team contained 8 mowers.

Alternatively, we may suppose that there are 2n mowers (since the team is said to
split into two halves), and that each mower mows at the rate of “r large fields per
day”.

The total work done in completing the larger field is then

(i) p2nˆ rq ˆ 1
2

in the morning and

(ii) pnˆ rq ˆ 1
2

in the afternoon

where each part is equal to

pnumber of menˆ rate of workingq ˆ plength of time workedq.

That is 3
2
nr. So 3

2
nr “ 1.

The total work done on the smaller field is

(i) pnˆ rq ˆ 1
2

in the afternoon of the first day, and

(ii) p1ˆ rq on the second day.

That is n`2
2
ˆ r. So n`2

2
ˆ r “ 1

2
(since the smaller field is half the larger field).

Hence 3
2
n “ n` 2.

84. The words “average speed” often provoke an unthinking assumption that one
is simply being asked to find the average of the “speed numbers” given in the
problem. A moment’s thought should remind us that the “average speed” for a
journey is not equal to the “average of the various speeds taken as pure numbers”;
it is equal to

(the total distance travelled) ˜ (the total time taken).

If the distance up the hill is m miles, then the climb takes m
2

hours, and the descent
takes m

4
hours. The total distance for the round trip is 2m miles, so Jack and Jill’s

average speed is
2m
3m
4

“
8

3
mph.
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Note: We first meet averages for discrete quantities, or whole numbers, where the
goal is to replace a collection of quantities, or numbers, by a single representative
statistic. If n quantities contribute equally, then each contributes exactly p 1

n
q
th to

the average.

One way of looking at this is to represent each of the quantities being averaged in a
bar chart – as rectangles of width 1, and with height corresponding to the quantity
represented. “Adding all the quantities and dividing by n” is then the same as
“calculating the total area under the graph and then dividing by the total length
of the interval”. In other words, we have replaced the complicated bar chart by a
constant function (or a single rectangle), which has the same domain as the bar
chart, and which has the same area under it (or integral) as the more complicated
bar chart.

More generally, given a function y “ fpxq defined for values of x in the interval
ra, bs, its average fra,bs (over the interval ra, bs) is defined to be

fra,bs “

şb

a
fpxqdx

|b´ a|
.

When we talk about “average speed”, we are thinking of speed changing as a
function of time; and the total distance covered in any given time interval ra, bs
is equal to the area under the graph. We want a single “average speed” vra,bs (a
constant function) that would cover the same distance in the same time as the
more complicated reality of varying speed. That is,

• we consider the speed vptq as a function of time t,

• then we integrate with respect to t over the specified time interval ra, bs, and

• finally we divide the result by the total length |b´ a| of the time interval:

vra,bs “

şb

a
vptqdt

|b´ a|
.

In Problem 84 the walking speed is misleadingly given in terms of “up” and “down”
– which represent the first half distance travelled, and the second half distance
travelled. The careful solver knows that s/he has to find “total distance travelled”
and divide by “total time taken”; but s/he may not notice that s/he has in fact
reinterpreted the given information so that speed is seen as a function of time
(rather than of distance).

85.

(a)(i) Let the distance covered on each lap be m km. Then the first lap takes me
m
40

hours; the second lap takes me m
30

hours; the third lap takes me m
20

hours.
So the total time taken for the three laps is

m

40
`
m

30
`
m

20
“

13m

120
hours.

Hence my average speed for the race covering 3m km is

3m
`

13m
120

˘ “
360

13
km/h.
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Note: Alternatively, because the two factors of m in the numerator and
the denominator cancel each other, this answer may be formulated as the
harmonic mean of the given speeds:

3
“

1
40
` 1

30
` 1

20

‰ .

(ii) In the first hour I cycle 40 km; in the second hour I cycle 30 km; in the third
hour I cycle 20 km. So in the three hours I cycle 40 ` 30 ` 20 “ 90 km. So
my average speed is 30 km/h.

Note: Alternatively, as long as the three time intervals t are equal, we land
up with t as a factor in both the numerator and the denominator, so these
common factors cancel out, and the answer is simply the arithmetic mean of
the given speeds:

20` 30` 40

3
.

(b)(i) The second cyclist spends more time cycling at 40 km/h than at 60 km/h,
so the first cyclist spends more time cycling at the higher speed. Hence
the first cyclist wins.

(ii) Again (unless u “ v), the first cyclist spends more time cycling at the higher
speed. Hence the first cyclist wins.

(c)(i) As in part (a)(ii), the first cyclist finishes with average speed u`v
2

km/h; and
as in part (a)(i) the second cyclist finishes with average speed

2
“

1
u
` 1

v

‰ km/h.

Hence, part (b)(ii) shows that

u` v

2
ě

2
“

1
u
` 1

v

‰ “
2uv

u` v
.

(ii) If we rearrange the required inequality

u` v

2
ě

2uv

u` v
,

then we see that it is equivalent to proving that pu`vq2 ě 4uv. This suggests
that we should start with the universally true statement:

pu´ vq2 ě 0 for all u, v ě 0.

Adding 4uv to both sides yields pu` vq2 ě 4uv.

Multiplying both sides by the non-negative quantity 1
2pu`vq

then gives the
required inequality.

86. The only “modelling” required here is to translate the problem using the
standard equations of kinematics. For motion from rest we have

(i) v “ at, where t is the time, a is the uniform acceleration, and v the final speed,
and
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(ii) s “ 1
2
at2, where s is the distance travelled.

There is a question as to what units we should use. For the moment we stick to
measuring v in km/h as given, s in km, t in hours, and a in the (unfamiliar) units
of km/h2: so 72 “ at and 4 “ 1

2
at2.

Dividing the second equation by the first gives 1
18
“ 1

2
t, so t “ 1

9
hours (“ 400

seconds).

Substituting in the first equation gives a “ 72ˆ 9 km/h2 (“ 1
20

m/sec2).

Note: Equations (i) and (ii) can be summarised as saying that, under uniform
acceleration a, the distance travelled is s “ p 1

2
atqˆ t. Hence the average speed for

the complete journey is equal to exactly half of the final speed v “ at.

In general, those tackling the problem may agree that the familiar units of speed
and distance do not give us a very good gut feeling for the scale of acceleration.
If we measure acceleration in km/h2, then we get huge numbers for acceleration
which one cannot easily relate to. And if we switch to m (metres), m/sec, and
m/sec2, then we get rather small numbers for the acceleration, which again convey
relatively little.

[The original (Russian) version of this problem had the train travelling 2.1 km and
reaching a speed of 54 km/h. This produces a nice answer for the time taken,
but a relatively inscrutable answer for the acceleration. So we have changed the
parameters.]

87.

‘‘We explain why, when a vehicle accelerates from 0 to 20 mph, its
average speed is more than 10 mph. In general, the average speed of an
accelerating vehicle is more than half the final speed after the acceleration.

Consider first the case when the acceleration is constant: this means that
the graph which represents the speed of the vehicle as a function of time
is a straight line:

In that case, the distance travelled is equal to the area under the graph.
But from the formula for the area of a triangle we know that this area
equals the area of the rectangle with the same base and half the height of
the triangle:
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This means that the average speed in that case is exactly half of the
final (maximum) speed.

But a car has higher acceleration in lower gears, that is, at
smaller speeds. Therefore the graph of speed as a function of time
is concave, and the area under the graph is greater than in the case of
constant acceleration. Hence, while reaching the same speed, the car
travels further and its average speed is higher:

We come to the conclusion that the average speed of an
accelerating car is greater than half its speed at the end of
acceleration.”

Note: The text of this solution is reproduced from the appendix to a document
prepared for, and submitted to, the Crown Prosecution Service in England. This
may partly explain why it contains not a single formula. It was written by a student
studying economics, and the mixture of language and graphs used illustrates the
typical economist’s way of thinking. Economists rarely have complete data, so
they tend to rely on a combination of common sense and the basic patterns of
economic variables – such as the “convexity” or “concavity” of functions. Indeed
some chapters of mathematical economics could be described as outlining “the
kinematics of money”, and have surprising similarities to mechanics.

88. Suppose sunrise was t hours before noon – so that the first woman covers the
total distance in t ` 4 hours, while the second covers the same distance in t ` 9
hours.

We know nothing about the distance from A to B, so it makes sense to choose this
distance as our unit.

Then the first woman’s speed is 1
t`4

, while the second woman’s speed is 1
t`9

units
per hour.
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The relative speed of A and B (the speed with which the distance between them
changes) is 1

t`4
` 1

t`9
.

They meet at noon, so in t hours, the distance between them reduces from 1 unit
to 0.

Hence

1 “ tˆ

ˆ

1

t` 4
`

1

t` 9

˙

;

that is, t2 “ 36, so t “ 6, and sunrise was at p12´ 6q “ 6 am.

89. Let us introduce a new measure of distance – which we call a league. (Readers
may know from old documents or from poetry that this was an old measure of
distance for journeys, without knowing exactly how far it was; so we feel free to
use it as an abstract unit of unknown size.)

To mesh distance and time, the journey from St Louis to New Orleans needs to
be some multiple of 7, and the journey from New Orleans to St Louis needs to
be some multiple of 5. Hence we choose the distance to be equal to 5 ˆ 7 “ 35
“leagues”.

Then the speed of the paddle-steamer upstream is:

35

7
“ 5 “leagues per day”

and the speed downstream is:

35

5
“ 7 “leagues per day”.

The speed of the current gets subtracted from the speed of the paddle-steamer
going upstream, and gets added to the speed of the paddle-steamer going
downstream; so the speed of the current is:

7´ 5

2
“ 1 “league per day”.

Hence a raft will drift from St Louis to New Orleans in 35
1
“ 35 days.

Note: This elegant solution involves the introduction of a hidden intermediate
parameter, an unknown quantity which helps us reason about the problem. The
parameter is apparently the distance (from St Louis to New Orleans); but it is in
fact a measure of distance chosen so as to be compatible with the time taken.

The art of identifying, and choosing, relevant “hidden parameters”, and the
analysis of their relation to the data, and their mutual relations, constitute an
important and challenging part of the mathematical modelling process.

Notice that if we reformulate the problem in more general terms, with the
paddle-steamer taking “a days” downstream and “b days” upstream, then the
answer “d days” (for the time to drift downstream) happens to be the harmonic
mean of the quantities “a” and “´b”:

d “
2

1
a
` 1
´b

.
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90. [This is “Problem 108” in Paolo dell’Abbaco’s Trattato d’aritmetica (c.1370),
with a rough translation of the solution procedure given there courtesy of Roy
Wagner.]

“Do the following: multiply 5 by 8, which makes 40. Then say thus: in
40 days one will make the trip 8 times, and the other 5 times, so both
together will make the trip 13 times.

Now say: if 40 days equals 13 trips, how many days are needed [on
average] for one trip? And so multiply 1 times 40, which makes 40;
then divide this by 13, which makes 3 days and 1

13
of a day.

And so I say that in 3 days and 1
13

of a day the two will come together.

And as this is done, so all similar problems are done.”

Note: The problem as stated conveys an air of reality by giving the distance
“from here to Florence” in miles; but this fact is not mentioned in the solution!
Instead, the solution starts by introducing a hidden parameter, measured by a
dimensionless unit: a trip.

This move (to invent a natural unit of measurement) also featured in Problem 89
above and has deep mathematical reasons. Problem 89 was borrowed from an
interview with Vladimir Arnold (Notices of the AMS, vol. 44, no. 4), where we
read:

Interviewer: Please tell us a little bit about your early education. Were
you already interested in mathematics as a child?

Arnold: [. . . ] The first real mathematical experience I had was when
our schoolteacher I.V. Morotzkin gave us the following problem [VA then
formulated Problem 89].

I spent a whole day thinking on this oldie, and the solution (based on
what are now called scaling arguments, dimensional analysis, or toric
variety theory, depending on your taste) came as a revelation.

The feeling of discovery that I had then (1949 ) was exactly the same as
in all the subsequent much more serious problems – be it the discovery
of the relation between algebraic geometry of real plane curves and
four-dimensional topology (1970 ), or between singularities of caustics
and of wave fronts and simple Lie algebras and Coxeter groups (1972 ).
It is the greed to experience such a wonderful feeling more and more
times that was, and still is, my main motivation in mathematics.

Arnold refers here to scaling arguments or dimensional analysis: that is, the
mathematical art of choosing and analysing the use of units of measurement. This
has its origins in, and includes as an integral part, Euclid’s classical theory of
proportion.
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91. Suppose as before that the sun rises t hours before noon; but replace 4 pm
(the time the woman starting at A arrived at B) by a pm, and replace 9 pm (the
time the woman starting at B arrived at A) by b pm. Let C be the point where
they meet (at noon).

Then, since each woman walks at a constant speed, we have

t

a
“
|AC|

|CB|
(for the woman starting from Aq,

and
t

b
“
|BC|

|CA|
(for the woman starting from Bq.

Hence
t

a
“
|AC|

|CB|
“
b

t
,

so t2 “ ab.

Note: This totally unexpected result validates the choice of the unknown t as the
time in hours from sunrise to noon. Not knowing its significance in advance, this
choice was motivated by the observation that “noon” occurs in the problem as the
only common “origin”, or reference point for time data.



IV. Algebra

The first rule of intelligent tinkering
is to save all the parts.

Paul R. Ehrlich (1932– )

Many important aspects of serious mathematics have their roots in the world
of arithmetic. However, when we implement an arithmetical procedure
by combining numbers with very different meanings to produce a single
numerical output, it becomes almost impossible to see how the separate
ingredients contribute to the final answer. In other words, calculating
exclusively with numbers contravenes Paul Ehrlich’s “first rule of intelligent
tinkering”. This is why in Chapters 1 and 2 we stressed the need to move
beyond blind calculation, and to begin to think structurally – even when
calculating purely with numbers. Algebra can be seen as a remarkable way
of “tinkering with numbers”, so that we not only “keep all the parts”, but
manage to keep them separate (by giving them different names), and hence
can see clearly what contribution each ingredient variable makes to the final
output. To benefit from this feature of algebra, we need to learn to “read”
algebraic expressions, and to interpret what they are telling us – in much
the same way that we learn to read numbers (so that, where appropriate,
100 is seen as 102, and 10 is seen as 1` 2` 3` 4).

Before algebra proper was invented (around 1600), the ability to extract
the general picture lying hidden inside each calculation was restricted
to specialists. The ancient Babylonians (1700–1500 BC) described their
general procedures as recipes, presented in the context of problems involving
particular numbers. But they did this in such a way as to demonstrate
convincingly that whoever formulated the procedure had managed to see
“the general in the particular”. The ancient Greeks used a geometrical
setting to reveal generality, and encoded what we would see as “algebraic”
methods in geometrical language. In the 9th century AD, Arabs such as
Al-Khwarizmi (c.780–c.850), managed to encapsulate generality using a very
limited kind of algebra, without the full symbolical language that would
emerge later. The abacists, such as Paolo dell’Abbaco (1282–1374) who
featured in Chapter 3, clearly saw that the power and spirit of mathematics
was rooted in this generality. But modern algebraic symbolism – in
particular, the idea that to express generality we need to use letters to
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represent not only variables, but also important parameters (such as the
coefficients a, b, c in a general quadratic ax2 ` bx ` c) – had to wait for
the inscrutable writings of Viète (1540–1603), and especially for Fermat
(1601–1665) and Descartes (1596–1650) who simplified and extended Viète’s
ideas in the 1630s.

Within a generation, the huge potential of this systematic use of symbols
was revealed by the triumphs of Newton (1642–1727), Leibniz (1646–1716),
and others in the years before 1700. Later, the refinements proposed by
Euler (1707–1783) in his many writings throughout the 18th century, made
this new language and its discoveries accessible to us all – much as Stevin’s
(1548–1620) version of place value for numbers made calculation accessible
to Everyman.

Our coverage of algebra is necessarily selective. We focus on a few ideas that
are needed in what follows, and which should ideally be familiar – but with
an emphasis that may be less familiar. When working algebraically, the key
mathematical messages are mostly implicit in the manipulations themselves.
Hence many of the additional comments in this chapter are to be found as
part of the solutions, rather than within the main text.

4.1. Simultaneous linear equations and symmetry

Problem 92 Dad took our new baby to the clinic to be weighed. But the
baby would not stay still and caused the needle on the scales to wobble. So
Dad held the baby still and stood on the scales, while nurse read off their
combined weight: 78kg. Then nurse held the baby, while Dad read off their
combined weight: 69kg. Finally Dad held the nurse, while the baby read off
their combined weight: 137kg. How heavy was the baby? 4

The situation described in Problem 92 is representative of a whole class
of problems, where the given information incorporates a certain symmetry,
which the solver would be wise to respect. Hence one should hesitate before
applying systematic brute force (as when using the information from one
weighing to substitute for one of the three unknown weights – a move which
effectively reduces the number of unknowns, but which fails to respect the
symmetry in the data).

A similar situation arises in certain puzzles like the following.

Problem 93 Numbers are assigned (secretly) to the vertices of a polygon.
Each edge of the polygon is then labelled with the sum of the numbers at
its two end vertices.
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(a) If the polygon is a triangle ABC, and the labels on the three sides are c
(on AB), b (on AC), and a (on BC), what were the numbers written at
each of the three vertices?

(b) If the polygon is a quadrilateral ABCD, and the labels on the four sides
are w (on AB), x (on BC), y (on CD), and z (on DA), what numbers
were written at each of the four vertices?

(c) If the polygon is a pentagon ABCDE, and the labels on the five sides
are d (on AB), e (on BC), a (on CD), b (on DE), and c (on EA), what
numbers were written at each of the five vertices? 4

In case any reader is inclined to dismiss such problems as “artificial puzzles”,
it may help to recall two familiar instances (Problems 94 and 96) which give
rise to precisely the above situation.

Problem 94 In the triangle ABC with sides of lengths a (opposite A), b
(opposite B), and c (opposite C), we want to locate the three points where
the incircle touches the three sides – at point P (on BC), Q (on CA), and
R (on AB). To this end, let the two tangents to the incircle from A (namely
AQ and AR) have length x, the two tangents from B (namely BP and BR)
have length y, and the two tangents from C (namely CP and CQ) have
length z. Find the values of x, y, z in terms of a, b, c. 4

The second instance requires us first to review the basic properties of
midpoints in terms of vectors.

Problem 95

(a) Write down the coordinates of the midpoint M of the line segment joining
Y “ pa, bq and Z “ pc, dq. Justify your answer.

(b) Position a general triangle XY Z so that the vertex X lies at the origin
p0, 0q. Suppose that Y then has coordinates pa, bq and Z has coordinates
pc, d). Let M be the midpoint of XY , and N be the midpoint of XZ.
Prove the Midpoint Theorem, namely that

“MN is parallel to Y Z and half its length”.

(c) Given any quadrilateral ABCD, let P be the midpoint of AB, let Q be the
midpoint of BC, let R be the midpoint of CD, and let S be the midpoint
of DA. Prove that PQRS is always a parallelogram. 4
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Problem 96

(a) Suppose you know the position vectors p, q, r corresponding to the
midpoints of the three sides of a triangle. Can you reconstruct the vectors
x, y, z corresponding to the three vertices?

(b) Suppose you know the vectors p, q, r, s corresponding to the midpoints
of the four sides of a quadrilateral. Can you reconstruct the vectors w, x,
y, z corresponding to the four vertices?

(c) Suppose you know the vectors p, q, r, s, t corresponding to the midpoints
of the five sides of a pentagon. Can you reconstruct the vectors v, w, x,
y, z corresponding to the five vertices? 4

The previous five problems explore a common structural theme – namely the
link between certain sums (or averages) and the original, possibly unknown,
data. However this algebraic link was in every case embedded in some
practical, or geometrical, context. The next few problems have been stripped
of any context, leaving us free to focus on the underlying structure in a purely
algebraic, or arithmetical, spirit.

Problem 97 Solve the following systems of simultaneous equations.

(a)(i) x` y “ 1, y ` z “ 2, x` z “ 3

(ii) uv “ 2, vw “ 4, uw “ 8

(b)(i) x` y “ 2, y ` z “ 3, x` z “ 4

(ii) uv “ 6, vw “ 10, uw “ 15

(iii) uv “ 6, vw “ 10, uw “ 30

(iv) uv “ 4, vw “ 8, uw “ 16 4

Problem 98 Use what you know about solving two simultaneous linear
equations in two unknowns to construct the general positive solution to the
system of equations:

uavb “ m, ucvd “ n.

Interpret your result in the language of Cramer’s Rule. (Gabriel Cramer
(1704–1752)). 4
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Problem 99

(a) For which values b, c does the following system of equations have a unique
solution?

x` y ` z “ 3, xy ` yz ` zx “ b, x2 ` y2 ` z2 “ c

(b) For which values a, b, c does the following system of equations have a
unique solution?

x` y ` z “ a, xy ` yz ` zx “ b, x2 ` y2 ` z2 “ c 4

4.2. Inequalities and modulus

The transition from school to university mathematics is in many ways
marked by a shift from simple variables, equations and functions, to
conditions and analysis involving inequalities and modulus.

Problem 100 What is | ´ x| equal to: x or ´x? (What if x is negative?)

4

4.2.1 Geometrical interpretation of modulus, of inequalities, and
of modulus inequalities

Problem 101

(a) Mark on the coordinate line all those points x in the interval r0, 1q which
have the digit “1” immediately after the decimal point in their decimal
expansion. What fraction of the interval r0, 1q have you marked?

Note: “r0, 1q” denotes the set of all points between 0 and 1, together with
0, but not including 1. r0, 1s denotes the interval including both endpoints;
and p0, 1q denotes the interval excluding both endpoints.

(b) Mark on the interval r0, 1q all those points x which have the digit “1” in
at least one decimal place. What fraction of the interval r0, 1q have you
marked?

(c) Mark on the interval r0, 1q all those points x which have a digit “1” in at
least one position of their base 2 expansion. What fraction of the interval
r0, 1q have you marked?

(d) Mark on the interval r0, 1q all those points x which have a digit “1” in at
least one position of their base 3 expansion. What fraction of the interval
r0, 1q have you marked? 4
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Problem 102 Mark on the coordinate line all those points x for which two
of the following inequalities are true, and five are false:

x ą 1, x ą 2, x ą 3, x ą 4, x ą 5, x ą 6, x ą 7. 4

Problem 103 Mark on the coordinate line all those points x for which

|x´ 5| “ 3. 4

Problem 104

(a) Mark on the coordinate line all those points x for which two of the following
inequalities are true, and five are false:

|x| ą 1, |x| ą 2, |x| ą 3, |x| ą 4, |x| ą 5, |x| ą 6, |x| ą 7.

(b) Mark on the coordinate line all those points x for which two of the following
inequalities are true, and five are false:

|x´1| ą 1, |x´2| ą 2, |x´3| ą 3, |x´4| ą 4, |x´5| ą 5, |x´6| ą 6, |x´7| ą 7.
4

Problem 105 Mark on the coordinate line all those points x for which

|x` 1| ` |x` 2| “ 2. 4

Problem 106 Find numbers a and b with the property that the set of
solutions of the inequality

|x´ a| ă b

consists of the interval p´1, 2q. 4

Problem 107

(a) Mark on the coordinate plane all points px, yq satisfying the inequality

|x´ y| ă 3.

(b) Mark on the coordinate plane all points px, yq satisfying the inequality

|x´ y ` 5| ă 3.

(c) Mark on the coordinate plane all points px, yq satisfying the inequality

|x´ y| ă |x` y|. 4
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4.2.2 Inequalities

Problem 108 Suppose real numbers a, b, c, d satisfy a
b ă

c
d .

(i) Prove that

a

b
ă

`

a
b `

c
d

˘

2
ă
c

d
.

(ii) If b, d ą 0, prove that
a

b
ă
a` c

b` d
ă
c

d
. 4

Problem 109 (Farey series) When the fully cancelled fractions in r0, 1s
with denominator ď n are arranged in increasing order, the result is called
the Farey series (or Farey sequence) of order n.

Order 1:
0

1
ă

1

1

Order 2:
0

1
ă

1

2
ă

1

1

Order 3:
0

1
ă

1

3
ă

1

2
ă

2

3
ă

1

1

Order 4:
0

1
ă

1

4
ă

1

3
ă

1

2
ă

2

3
ă

3

4
ă

1

1

(a) Write down the full Farey series (or sequence) of order 7.

(b)(i) Imagine the points 0.1, 0.2, 0.3, . . . , 0.9 dividing the interval r0, 1s into
ten subintervals of length 1

10 . Now insert the eight points corresponding
to

1

9
,

2

9
,

3

9
, . . . ,

8

9
.

Into which of the ten subintervals do they fall?

(ii) Imagine the n points

1

n` 1
,

2

n` 1
,

3

n` 1
, . . . ,

n

n` 1

dividing the interval r0, 1s into n ` 1 subintervals of length 1
n`1 . Now

insert the n´ 1 points

1

n
,

2

n
,

3

n
, . . . ,

n´ 1

n
.

Into which of the n` 1 subintervals do they fall?
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(iii) In passing from the Farey series of order n to the Farey series of order
n ` 1, we insert fractions of the form k

n`1 between certain pairs of
adjacent fractions in the Farey series of order n. If a

b ă
c
d are adjacent

fractions in the Farey series of order n, prove that, when adding fractions
for the Farey series of order n ` 1, at most one fraction is inserted
between a

b and c
d .

(c) Note: It is worth struggling to prove the two results in part (c). But do
not be surprised if they prove to be elusive – in which case, be prepared
to simply use the result in part (c)(ii) to solve part (d).

(i) In the Farey series of order n the first two fractions are 0
1 ă

1
n , and the

last two fractions are n´1
n ă 1

1 . Prove that every other adjacent pair of
fractions a

b ă
c
d in the Farey series of order n satisfies bd ą n.

(ii) Let a
b ă

c
d be adjacent fractions in the Farey series of order n. Prove

(by induction on n) that bc´ ad “ 1.

(d) Prove that if
a

b
ă
c

d
ă
e

f

are three successive terms in any Farey series, then

c

d
“
a` e

b` f
. 4

Problem 110 Solve the following inequalities.

(a) x`
1

x
ă 2

(b) x ď 1`
2

x

(c)
?
x ă x`

1

4
4

Problem 111

(a) The sum of two positive numbers equals 5. Can their product be equal to
7?

(b) (Arithmetic mean, Geometric mean, Harmonic mean, Quadratic
mean) Prove that, if a, b ą 0, then

2
“

1
a `

1
b

‰ “
2ab

a` b
ď
?
ab ď

a` b

2
ď

c

a2 ` b2

2

pHM ď GM ď AM ď QMq 4
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Problem 112 The two hundred numbers

1, 2, 3, 4, 5, . . . , 200

are written on the board. Students take turns to replace two numbers a, b
from the current list by their sum divided by

?
2. Eventually one number is

left on the board. Prove that the final number must be less than 2000. 4

4.3. Factors, roots, polynomials and surds

Problem 113

(a)(i) Find a prime number which is one less than a square.

(ii) Find another such prime.

(b)(i) Find a prime number which is one more than a square.

(ii) Find another such prime.

(c)(i) Find a prime number which is one less than a cube.

(ii) Find another such prime.

(d)(i) Find a prime number which is one more than a cube.

(ii) Find another such prime. 4

Problem 114 Factorise x4 ` 1 as a product of two quadratic polynomials
with real coefficients. 4

4.3.1 Standard factorisations

The challenge to factorise unfamiliar expressions, may at first leave us
floundering. But if we assume that each such problem is solvable with
the tools at our disposal, we then have no choice but to fall back on the
standard tools we have available (in particular, the standard factorisation
of a difference of two squares, in which “cross terms” cancel out). The next
problem extends this basic repertoire of standard factorisations.

Problem 115

(a)(i) Factorise a3 ´ b3.

(ii) Factorise a4 ´ b4 as a product of one linear factor and one factor of
degree 3, and as a product of two linear factors and one quadratic
factor.
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(iii) Factorise an ´ bn as a product of one linear factor and one factor of
degree n´ 1.

(b)(i) Factorise a3 ` b3.

(ii) Factorise a5 ` b5 as a product of one linear factor and one factor of
degree 4.

(iii) Factorise a2n`1` b2n`1 as a product of one linear factor and one factor
of degree 2n. 4

Problem 115 develops the ideas that were implicit in Problem 113. The
clue lies in Problem 113(a), and in the comment made in the main text in
Chapter 1 (after Problem 4 in Chapter 1), which we repeat here:

“The last part [of Problem 113(a)] is included to emphasise a
frequently neglected message:

Words and images are part of the way we communicate.
But most of us cannot calculate with words and images.

To make use of mathematics, we must routinely translate words
into symbols. So “numbers” need to be represented by symbols,
and points in a geometric diagram need to be properly labelled
before we can begin to calculate, and to reason, effectively.”

As soon as one reads the words “one less than a square”, one should
instinctively translate this into the form “x2 ´ 1”. Bells will then begin
to ring; for it is impossible to forget the factorisation

x2 ´ 1 “ px´ 1qpx` 1q.

And it follows that:

for a number that factorises in this way to be prime, the smaller
factor x´ 1 must be equal to 1;
6 x “ 2, so there is only one such prime.

The integer factorisations in Problem 113(c) – namely

33 ´ 1 “ 2ˆ 13, 43 ´ 1 “ 3ˆ 21, 53 ´ 1 “ 4ˆ 31, 63 ´ 1 “ 5ˆ 43, . . .

may help one to remember (or to discover) the related factorisation

x3 ´ 1 “ px´ 1qpx2 ` x` 1q.

6 For a number that factorises in this way to be prime, the smaller
factor “x´ 1” must be equal to 1;
6 x “ 2, so there is only one such prime.
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Problem 113 parts (a) and (c) highlight the completely general factorisation
(Problem 115(a)(iii)):

xn ´ 1 “ px´ 1qpxn´1 ` xn´2 ` ¨ ¨ ¨ ` x2 ` x` 1q.

This family of factorisations also shows that we should think about the
factorisation of x2 ´ 1 as px ´ 1qpx ` 1q, with the uniform factor px ´ 1q
first (rather than as px ` 1qpx ´ 1qq. Similarly, the results of Problem
115 show that we should think of the familiar factorisation of a2 ´ b2 as
pa ´ bqpa ` bq, (not as pa ` bqpa ´ bq, but always with the factor pa ´ bq
first).

The integer factorisations in Problem 113(d) – namely

33`1 “ 4ˆ7, 43`1 “ 5ˆ13, 53`1 “ 6ˆ21, 63`1 “ 7ˆ31, 73`1 “ 8ˆ43, . . .

may help one to remember (or to discover) the related factorisation

x3 ` 1 “ px` 1qpx2 ´ x` 1q.

6 For such a number to be prime, one of the factors must be equal
to 1.
This time one has to be more careful, because the first bracket may
not be the “smaller factor” – so there are two cases to consider:

(i) if x` 1 “ 1, then x = 0, and x3 ` 1 “ 1 is not prime;

(ii) if x2 ´ x ` 1 “ 1, then x “ 0 or x “ 1, so x “ 1 and we obtain
the prime 2 as the only solution.

The factorisation for x3 ` 1 works because “3 is odd”, which allows
the alternating `{´ signs to end in a “`” as required. Hence Problem
113(d)(iii) highlights the completely general factorisation for odd powers:

x2n`1 ` 1 “ px` 1qpx2n ´ x2n´1 ` x2n´2 ´ ¨ ¨ ¨ ` x2 ´ x` 1q.

You probably know that there is no standard factorisation of x2 ` 1, or of
x4 ` 1 (but see Problem 114 above).

Problem 116

(a) Derive a closed formula for the sum of the geometric series

1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rn.

(The meaning of closed formula was discussed in the Note to the solution
to Problem 54(b) in Chapter 2.)
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(b) Derive a closed formula for the sum of the geometric series

a` ar ` ar2 ` ar3 ` ¨ ¨ ¨ ` arn. 4

We started this subsection by looking for prime numbers of the form x2´ 1.
A simple-minded approach to the distribution of prime numbers might look
for formulae that generate primes – all the time, or infinitely often, or at
least much of the time. In Chapter 1 (Problem 25) you showed that no
prime of the form 4k ` 3 can be “represented” as a sum of two squares (i.e.
in the form “x2 ` y2”), and we remarked that every other prime can be so
represented in exactly one way. It is true (but not obvious) that roughly
half the primes fall into the second category; so it follows that substituting
integers for the two variables in the polynomial x2 ` y2 produces a prime
number infinitely often.

Problem 117 Experiment suggests, and Goldbach (1690–1764) showed in
1752 that no polynomial in one variable, and with integer coefficients, can
give prime values for all integer values of the variable. But Euler (1707–1783)
was delighted when he discovered the quadratic

fpxq “ x2 ` x` 41.

Clearly fp0q “ 41 is prime. And fp1q “ 43 is also prime. What is the first
positive integer n for which fpnq is not prime? 4

Problem 117 should be seen as a particular instance of the question as
to whether prime numbers can be captured by a polynomial with integer
coefficients, and in particular by a quadratic. The next two problems
consider the simplest instances of representing prime numbers by expressions
involving exponentials (that is, where the variable is in the exponent).

Problem 118

(a)(i) Suppose an´ 1 “ p is a prime. Prove that a “ 2 and that n must itself
be prime.

(ii) How many primes are there among the first five such numbers

22 ´ 1, 23 ´ 1, 25 ´ 1, 27 ´ 1, 211 ´ 1?

(b)(i) Suppose an ` 1 “ p is a prime. Prove that either a “ 1, or a must be
even and that n must then be a power of 2.

(ii) In the simplest case, where a “ 2, how many primes are there among
the first five such numbers

21 ` 1, 22 ` 1, 24 ` 1, 28 ` 1, 216 ` 1? 4
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Primes of the form 2p´1 are called Mersenne primes (after Marin Mersenne
(1588–1648)). We now know at least fifty such primes (with the exponent
p ranging up to around 80 million). Finding new primes is not in itself
important, but the search for Mersenne primes has been used as a focus for
many new developments in programming, and in number theory.

Primes of the form 2n ` 1 are called Fermat primes (after Pierre de Fermat
(1601–1665)). The story here is very different. We now refer to the number
2n ` 1 with n “ 2k as the kth Fermat number fk. You showed in Problem
118 (as Fermat did himself) that f0, f1, f2, f3, f4 are all prime. Fermat
then rather rashly claimed that fn is always prime. However, Euler showed
(100 years later) that the very next Fermat number f5 fails to be prime. And
despite all the power of modern computers, we have still not found another
Fermat number that is prime!

4.3.2 Quadratic equations

The general solution of quadratic equations dates back to the ancient
Babylonians (« 1700 BC). Our modern understanding depends on two facts:

• an equation of the form x2 “ a where a ą 0, has exactly two solutions:
x “ ˘

?
a;

• any product X ¨ Y is equal to 0 precisely when one of the two factors X,
Y is equal to 0.

Problem 119 Solve the following quadratic equations:

(a) x2 ´ 3x` 2 “ 0

(b) x2 ´ 1 “ 0

(c) x2 ´ 2x` 1 “ 0

(d) x2 `
?

2x´ 1 “ 0

(e) x2 ` x´
?

2 “ 0

(f) x2 ` 1 “ 0

(g) x2 `
?

2x` 1 “ 0 4

Problem 120 Let
ppxq “ x2 `

?
2x` 1.

Find a polynomial qpxq such that the product ppxqqpxq has integer
coefficients. 4
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Problem 121

(a) I am thinking of two numbers, and am willing to tell you their sum s and
their product p. Express the following procedure algebraically and explain
why it will always determine my two unknown numbers.

Halve the sum s, and square the answer.
Then subtract the product p and take the square root of the result,
to get the answer.
Add “the answer” to half the sum and you have one unknown
number; subtract “the answer” from half the sum and you have
the other unknown number.

(b) I am thinking of the length of one side of a square. All I am willing to tell
you are two numbers b and c, where when I add b times the side length to
the area I get the answer c. Express the following procedure algebraically
and explain why it will always determine the side length of my square.

Take one half of b, square it and add the result to c.
Then take the square root.
Finally subtract half of b from the result.

(c) A regular pentagon ABCDE has sides of length 1.

(i) Prove that the diagonal AC is parallel to the side ED.

(ii) If AC and BD meet at X, explain why AXDE is a rhombus.

(iii) Prove that triangles ADX and CBX are similar.

(iv) If AC has length x, set up an equation and find the exact value of x.
4

Problem 121(a), (b) link to Problem 111(a) (and to Problem 129 below),
in relating the roots and the coefficients of a quadratic. If we forget for the
moment that the coefficients are usually known, while the roots are unknown,
then we see that if α and β are the roots of the quadratic

x2 ` bx` c,

then
px´ αqpx´ βq “ x2 ` bx` c,

so
α` β “ ´b and αβ “ c.

In other words, the two coefficients b, c are equal to the two simplest
symmetric expressions in the two roots α and β. Part (a) of the next
problem is meant to suggest that all other symmetric expressions in α and
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β (that is, any expression that is unchanged if we swap α and β) can then
be written in terms of b and c. The full result proving this fact is generally
attributed to Isaac Newton (1642–1727). Part (b) suggests that, provided
one is willing to allow case distinctions, something similar may be true of
anti-symmetric expressions (where the effect of swapping α and β is to
multiply the expression by “´1”).

Problem 122 Let α and β be the roots of the quadratic equation

x2 ` bx` c “ 0.

(a)(i) Write α2 ` β2 in terms of b and c only.

(ii) Write α2β ` β2α in terms of b and c only.

(iii) Write α3 ` β3 ´ 3αβ in terms of b and c only.

(b)(i) Write α´ β in terms of b and c only.

(ii) Write α2β ´ β2α in terms of b and c only.

(iii) Write α3 ´ β3 in terms of b and c only. 4

Problem 123 (Nested surds, simplification of surds)

(a)(i) For any positive real numbers a, b, prove that

?
a`

?
b “

b

a` b`
?

4ab

(ii) Simplify
a

5`
?

24.

(b)(i) Find a similar formula for
?
a´

?
b.

(ii) Simplify
a

5´
?

16 and
a

6´
?

20. 4

Problem 124 (Integer polynomials with a given root) We know that
α “ 1 is a root of the polynomial equation x2´ 1 “ 0; that α “

?
2 is a root

of x2 ´ 2 “ 0; and that α “
?

3 is a root of x2 ´ 3 “ 0.

(a) Find a quadratic polynomial with integer coefficients which has

α “ 1`
?

2

as a root.
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(b) Find a quadratic polynomial with integer coefficients which has

α “ 1`
?

3

as a root.

(c) Find a polynomial with integer coefficients which has

α “
?

2`
?

3

as a root. What are the other roots of this polynomial?

(d) Find a polynomial with integer coefficients which has

α “
?

2`
1
?

3

as a root. What are the other roots of this polynomial? 4

Problem 125

(a) Prove that the number
?

2`
?

3 is irrational.

(b) Prove that the number
?

2`
?

3`
?

5 is irrational. 4

Problem 126 (Polynomial long division) Find

(i) the quotient and the remainder when we divide x10 ` 1 by x3 ´ 1

(ii) the remainder when we divide x2013 ` 1 by x2 ´ 1

(iii) the quotient and the remainder when we divide xm ` 1 by xn ´ 1, for
m ą n ě 1. 4

Problem 127 Find the remainder when we divide x2013` 1 by x2`x` 1.
4

4.4. Complex numbers

Up to this point, the chapter and solutions have largely avoided mentioning
complex numbers. However, the present chapter would be incomplete were
we not to interpret some of the earlier material in terms of complex numbers.
Readers who have already met complex numbers will probably still find much
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in the next two sections that is new. Those for whom complex numbers are
as yet unfamiliar should muddle through as best they can, and may then be
motivated to learn more in due course.

We already know that the square x2 of any real number x is ě 0.

• If a “ 0, then the equation x2 “ a has exactly one root, namely x “ 0;

• if a ą 0, then the equation x2 “ a has exactly two roots – namely ˘
?
a,

where
?
a denotes the root that is positive;

• if a ă 0, then the equation x2 “ a has no real roots.

And that is where the matter would have rested.

From a modern perspective, we can see that complex numbers are implicit in
the formula for the roots of a quadratic equation: complex numbers become
explicit as soon as the coefficients of a quadratic ax2 ` bx` c give rise to a
negative discriminant b2 ´ 4ac ă 0.

But this may not have been quite how complex numbers were discovered.
Contrary to oft-repeated myths, complex numbers may not have forced
themselves on our attention by someone asking about “solutions to the
quadratic equation x2 “ ´1”. As long as we inhabit the domain of real
numbers, we can be sure that no known number x could possibly have such
a square, so we are unlikely to go in search of it.

New ideas in the history of mathematics tend to emerge when a fresh
analysis of familiar entities forces us to consider the possible existence of
some previously unsuspected universe. In the time from the ancient world
up to the fifteenth century, the idea of “number”, and of calculation, was
restricted to the world of real (usually positive) numbers. In such a world,
quadratic equations with non-real solutions simply could not arise.

However, in the Brave New World of the Renaissance, where novelty,
exploration, and discovery were part of the Zeitgeist, a general method
for solving cubic equations was part of the as-yet-undiscovered “wild
west” of mathematics, part of the mathematical New World which invited
exploration. Notice that this was not a wildly speculative venture (like trying
to solve the meaningless equation “x2 “ ´1”), since a cubic polynomial
always has at least one real root. After three thousand years in which little
progress had been made, the first half of the sixteenth century witnessed an
astonishing burst of progress, resulting in the solution not only of cubic
equations, but also of quartic equations. We postpone the details until
Section 4.5. All we note here is that,

the general method for solving cubic equations published in 1545,
was given as a procedure, illustrated by examples, that showed
how to find genuinely real solutions to equations of the third degree
having genuinely real (and positive) coefficients.
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The procedure clearly worked. And it proceeded as follows:

Construct the real solution x as the sum x “ u ` v of two
intermediate answers u and v – where the two summands u and v
sometimes turned out to be what we would call “conjugate complex
numbers”, whose imaginary parts cancelled out, leaving a real result
for the required root x.

Those who devised the procedure had no desire to leave the real domain:
they were focused on a problem in the real domain (a cubic equation with real
coefficients, having a real root), and devised a general procedure to find that
genuinely real root. But the procedure they discovered led the solver on a
journey that sometimes “passed into the complex domain”, before returning
to the real domain! (See Problem 129.)

Working with complex numbers depends on two skills – one very familiar,
and one less so.

• The familiar skill is a willingness to work with a “number” in terms of its
properties only, without wishing to evaluate it.

We are thoroughly familiar with this when we work with 2
3 and other

fractions: we know that 2
3 “ 2ˆ 1

3 ; and all we know about 1
3 is that “whenever

we have 3 copies of 1
3 , we can simplify this to 1”. Much the same happens

when we first learn to work with
?

2, where we carry out such calculations
as p1`

?
2q2 “ 3` 2

?
2, based only on collecting up like terms and the fact

that
?

2ˆ
?

2 can always be replaced by 2.

• The less familiar skill is easily overlooked. When, for whatever reason, we
decide to allow solutions to the equation x2 “ ´1, three things need to be
understood.

– First, these new solutions come in pairs: if i is one solution of x2 “ ´1
then ´i is another (because p´1q ˆ p´1q “ 1 means that p´xq2 “ x2

for all “numbers” x).

– Second, the equation x2 “ ´1 has exactly two solutions – one the
negative of the other (if x and y are both solutions, then x2 “ y2, so
x2 ´ y2 “ px´ yqpx` yq “ 0, so either x “ y, or x “ ´y).

– Third, we have no way of telling these two solutions apart : we know
that each is the negative of the other, but there is no way of singling out
one of them as “the main one” (as we could when defining the square
root of a positive real such as 2). We can call them ˘i, but they are
each as good as the other. This important fact is often undermined
by referring to one of these roots as

?
´1 (as if it were the dominant

partner), and to the other as ´
?
´1 (as if it were somehow just the

“negative” of the main root).
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The truth is that “
?
´1” is a serious abuse of notation, because there is

no way to extend the definition of the function “
?

” in the way that

this implies: when we try to “take square roots” of negative (or complex)
numbers, the output is inescapably “two-valued”, so “

?
” is no longer a

function. The two roots of x2 “ ´1 are like Tweedledum and Tweedledee:
we know there are two of them, and we know how they are related; but we
have no way of distinguishing them, or of singling one of them out.

Once we accept this, we can write complex numbers in the form a ` bi,
where a and b are real numbers (just as we used to write numbers in the
form a ` b

?
2, where a and b are rational numbers). And we can proceed

to add, subtract, multiply, and divide such expressions, and then collect up
the “real” and “imaginary” parts to tidy up the answer.

Problem 128

(a) Write the inverse pa` biq´1 in the form c` di.

(b) Write down a quadratic equation with real coefficients, which has a ` bi
as one root (where a and b are real numbers). 4

Problem 129 Divide 10 into two parts, whose product is 40. 4

Problem 129 appears in Chapter XXXVII of Girolamo Cardano’s
(1501–1576) book Ars Magna (1545). Having previously presented the
general methods for solving quadratic, cubic, and quartic equations, he
honestly confronts the phenomenon that his method for solving cubic
equations (see Problem 135) produces the required real (and positive)
solution x as a sum of complex conjugates u and v – involving not only
negative numbers, but square roots of negative numbers. After presenting
the formal solution of Problem 129, and having shown that the calculation
works exactly as it should, he adds the bemused remark:

“So progresses arithmetic subtlety,
the end of which . . . is as refined as it is useless.”

Arithmetic with complex numbers in the form a` bi is done by carrying out
the required operations, and then collecting up the “real” and “imaginary”
parts as separate components – just as with adding vectors pa, bq. We treat
the two parts as Cartesian coordinates, and so identify the complex number
a` bi with the point pa, bq in the complex plane.

The “Cartesian” representation a ` bi is very convenient for addition. But
the essential definition (and significance) of complex numbers is rooted in
multiplication. And for multiplication it is often much better to work with
complex numbers written in polar form. Suppose we mark the complex
number w “ a` bi in the complex plane.
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The modulus |w| of w (often denoted by r) is the distance r “?
a2 ` b2 of the complex number a ` bi from the origin in the

complex plane.
The angle θ, measured anticlockwise from the positive real axis to
the line joining the complex number w to the origin, is called the
argument, Argpwq “ θ, of w.

It is then easy to check that a “ r cos θ, b “ r sin θ, and that

w “ rpcos θ ` i sin θq.

This is the polar form for w. Instead of focusing on the Cartesian coordinates
a, b, the polar form pinpoints w in terms of

• its length, or modulus, r (which specifies the circle, with centre at the
origin, on which the complex number w lies), and

• the argument θ (which tells us where on this circle w is to be found).

Problem 130

(a) Given two complex numbers in polar form:

w “ rpcos θ ` i sin θq, z “ spcosφ` i sinφq,

show that their product is precisely

wz “ rspcospθ ` φq ` i sinpθ ` φqq.

(b) (de Moivre’s Theorem: Abraham de Moivre (1667–1754)) Prove that

pcos θ ` i sin θqn “ cospnθq ` i sinpnθq.

(c) Prove that, if
z “ rpcos θ ` i sin θq

satisfies zn “ 1 for some integer n, then r “ 1. 4

The last three problems in this subsection look more closely at “roots of
unity” – that is, roots of the polynomial equation xn “ 1. In the real
domain, we know that:

(i) when n is odd, the equation xn “ 1 has exactly one root, namely x “ 1;
and

(ii) when n is even, the equation xn “ 1 has just two solutions, namely x “ ˘1.
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In contrast, in the complex domain, there are n “nth roots of unity”. Problem
130(c) shows that these “roots of unity” all lie on the unit circle, centered
at the origin. And if we put nθ “ 2kπ in Problem 130(b) we see that the
n nth roots of unity include the point “1 “ cos 0 ` i sin 0”, and are then
equally spaced around that circle with θ “ 2kπ

n p1 ď k ď n ´ 1q, and form
the vertices of a regular n-gon.

Problem 131

(a) Find all the complex roots of unity of degree 3 (that is, the roots of x3 “ 1)
in surds form.

(b) Find all the complex roots of unity of degree 4 in surd form.

(c) Find all the complex roots of unity of degree 6 in surd form.

(d) Find all the complex roots of unity of degree 8 in surd form. 4

Problem 132 Use Problem 131(d) to factorise x4 ` 1 as a product of four
linear factors, and hence as a product of two quadratic polynomials with real
coefficients. 4

Problem 133

(a) Find all the complex roots of unity of degree 5 in surd form.

(b) Factorise x5´ 1 as a product of one linear and two quadratic polynomials
with real coefficients. 4

4.5. Cubic equations

The first recorded procedure for finding the positive roots of any given
quadratic equation dates from around 1700 BC (ancient Babylonian). A
corresponding procedure for cubic equations had to wait until the early
sixteenth century AD. The story is a slightly complicated one – involving
public contests, betrayal, and much else besides.

In Section 4.4 we saw that the cubic equation x3 “ 1 has three solutions
– two of which are complex numbers. But in the sixteenth century, even
negative numbers were viewed with suspicion, and complex numbers were
still unknown. Moreover, symbolical algebra had not yet been invented,
so everything was carried out in words: constants were “numbers”; a given
multiple of the unknown was referred to as so many “things”; a given multiple
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of the square of the unknown was simply referred to as “squares”; and so
on.

In short, we know that an improved method for sometimes finding a
(positive) unknown which satisfied a cubic equation was devised by Scipione
del Ferro (1465–1526) around 1515. He kept his method secret until just
before his death, when he told his student Antonio del Fiore (1506–??).
Niccolò Tartaglia (1499–1557) then made some independent progress in
solving cubic equations. At some stage (around 1535) Fiore challenged
Tartaglia to a public “cubic solving contest”. In preparing for this event,
Tartaglia managed to improve on his method, and he seems to have
triumphed in the contest. Tartaglia naturally hesitated to divulge his
method in order to preserve his superiority, but was later persuaded to
communicate what he knew to Girolamo Cardano (1501–1576) after Cardano
promised not to publish it (either never, or not before Tartaglia himself
had done so). Cardano improved the method, and his student Ferrari
(1522–1565) extended the idea to give a method for solving quartic equations
– all of which Cardano then published, contrary to his promise, but with
full attribution to the rightful discoverers, in his groundbreaking book Ars
Magna (1545 – just two years after Copernicus (1473–1543) published his
De revolutionibus . . . ). Problem 134 illustrates the necessary first move in
solving any cubic equation. Problem 135 then illustrates the general method
in a relatively simple case.

Problem 134

(a) Given the equation x3 ` 3x2 ´ 4 “ 0, choose a constant a, and then
change variable by substituting y “ x ` a to produce an equation of the
form y3 ` ky “ constant.

(b) In general, given any cubic equation ax3 ` bx2 ` cx ` d “ 0 with a ‰ 0,
show how to change variable so as to reduce this to a cubic equation with
no quadratic term. 4

Problem 135 The equation x3 ` 3x2 ´ 4 “ 0 clearly has “x “ 1” as a
positive solution. (The other two solutions are x “ ´2, and x “ ´2 – a
repeated root; however negatives were viewed with suspicion in the sixteenth
century, so this root might well have been ignored.) Try to understand how
the following sequence of moves “finds the root x “ 1”:

(i) substitute y “ x` 1 to get a cubic equation in y with no term in y2;

(ii) imagine y “ u` v and interpret the identity for

pu` vq3 “ u3 ` 3uvpu` vq ` v3
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as your cubic equation in y;

(iii) solve the simultaneous equations “3uv “ 3”, “u3 ` v3 “ 2” (not by
guessing, but by substituting v “ 1

u from the first equation into the second
to get a quadratic equation in “u3”, which you can then solve for u3 before
taking cube roots);

(iv) then find the corresponding value of v, hence the value of y “ u` v, and
hence the value of x. 4

The simple method underlying Problem 135 is in fact completely general.
Given any cubic equation

ax3 ` bx2 ` cx` d “ 0 pwith a ‰ 0q

we can divide through by a to reduce this to

x3 ` px2 ` qx` r “ 0

with leading coefficient “ 1. Then we can substitute y “ x ` p
3 and reduce

this to a cubic equation in y

y3 ´ 3
´p

3

¯2

y ` qy `

„

r ` 2
´p

3

¯3

´ q
´p

3

¯



“ 0

which we can treat as having the form

y3 ´my ´ n “ 0.

So we can set y “ u` v (for some unknown u and v yet to be chosen), and
treat the last equation as an instance of the identity

pu` vq3 ´ 3uvpu` vq ´ pu3 ` v3q “ 0

which it will become if we simply choose u and v to solve the simultaneous
equations

3uv “ m, u3 ` v3 “ n.

We can then solve these equations to find u, then v – and hence find y “ u`v
and x “ y ´ p

3 .

4.6. An extra

Back in Chapter 1, Problem 6 we introduced the Euclidean algorithm for
integers. The same idea was extended to polynomials with integer coefficients
in Problem 126. In both these settings one starts with a domain (whether
the set of integers, or the set of all polynomials with integer coefficients)
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where there is a notion of divisibility: given two elements m, n in the relevant
domain, we say

“n divides m” if there exists an element q in the domain such that
m “ qn.

The next problem invites you to think how one might extend the Euclidean
algorithm to a new domain, namely the Gaussian integers Zris – the set of
all complex numbers a` bi in which the real and imaginary “coordinates” a
and b are integers.

Problem 136 Complex numbers a ` bi, where both a and b are integers,
are called Gaussian integers. Try to formulate a version of the “division
algorithm” for “division with remainder” (where the remainder is always
“less than” the divisor in some sense) for pairs of Gaussian integers. Extend
this to construct a version of the Euclidean algorithm to find the HCF of
two given Gaussian integers. 4

It is a profoundly erroneous truism . . .
that we should cultivate the habit of thinking what we are doing.

The precise opposite is the case.
Civilisation advances by extending the number of important

operations which we can perform without thinking about them.

Alfred North Whitehead (1861–1947)

4.7. Chapter 4: Comments and solutions

92. Answer: Humour aside, this is a common situation.

We know d` b, n` b, d` n rather than the values of d, b, n.

The key is to exploit the symmetry in the given data, rather than solving blindly.
Adding all three two-way totals gives 2pd` b` nq “ 284, whence d` b` n “ 142.
We can then subtract the given value of d` n “ 137 to get the value of b “ 5.

93.

(a) Let the numbers at the three vertices be A, B, C. Adding shows that

a` b` c “ 2pA`B ` Cq

so

A “
a` b` c

2
´ pB ` Cq “

b` c´ a

2
etc.
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(c) Note: We postpone the “solution” of part (b), and address part (c) first. Let
the numbers at the five vertices be A, B, C, D, E. Adding shows that

d` e` a` b` c “ 2pA`B ` C `D ` Eq

so

A “
d` e` a` b` c

2
´ pB ` Cq ´ pD ` Eq

“
d´ e` a´ b` c

2

etc.

(b) The second part is different. The four given edge-values do not determine the
four unknown vertex-values. It may look as though four pieces of information
should suffice to find four unknowns; but there is a catch: the sum of the numbers
on the two opposite edges AB and CD is just the sum of the numbers at the
four vertices, and so is equal to the sum of the numbers on the edges BC and
DA. Hence one of the given edge-values is determined by the other three.

Note: This distinction between polygons with an odd and an even number of
vertices would arise in exactly the same way if each edge was labelled with the
average (“half the sum”) of the numbers at its two end vertices.

94. a “ BC “ BP ` PC “ y ` z; b “ x` z; c “ x` y. Hence

a` b` c “ 2px` y ` zq

so

x` y ` z “
a` b` c

2
.

So

x “
a` b` c

2
´ py ` zq

“
b` c´ a

2

etc.

95.

(a) Let

M “

ˆ

a` c

2
,
b` d

2

˙

.

The shift, or vector, from pa, bq to pc, dq goes

“along c´ a in the x-direction” and “up d´ b in the y-direction”.

Draw the ordinate through Y and the abscissa through Z, to meet at P , so
creating a right angled triangle with legs Y P of length |c´ a| and PZ of length
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|d´ b|. The midpoint of Y P clearly lies halfway along Y P at

S “
´

a`
c´ a

2
, b
¯

and the midpoint of PZ clearly lies halfway up PZ at

T “

ˆ

c, d´
d´ b

2

˙

.

Then 4Y SM and 4MTZ are both right-angled triangles and are congruent
(by RHS congruence). Hence YM “MZ, so M is the midpoint of Y Z.

(b)

M “

ˆ

a

2
,
b

2

˙

, N “

ˆ

c

2
,
d

2

˙

so vector

MN “

ˆ

c´ a

2
,
d´ b

2

˙

“
1

2
BC.

(c) Note: We use the result from part (b), but not the method from part (b).

By part (b) applied to 4BAC, PQ is half the length of AC and parallel to AC.

By part (b) applied to 4DAC, SR is half the length of AC and parallel to AC.

Hence PQ is parallel to SR.

Similarly one can prove (applying part (b) twice – first to 4ABD, and then to
4CBD) that PS is parallel to QR.

Hence PQRS is a parallelogram.

96.

(a) p “ 1
2
px` yq, q “ 1

2
py ` zq, r “ 1

2
pz` xq, so

p` q` r “ x` y ` z.

Hence

x “ pp` q` rq ´ py ` zq “ p´ q` r

y “ pp` q` rq ´ px` zq “ p` q´ r

z “ pp` q` rq ´ px` yq “ q` r´ p.

(b)

p “
1

2
pw ` xq, q “

1

2
px` yq, r “

1

2
py ` zq, s “

1

2
pz`wq

so
p` q` r` s “ w ` x` y ` z.

Hence
w “ pp` q` r` sq ´ px` y ` zq;

but there is no obvious way to pin down px` y ` zq.
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In fact different quadrilaterals may give rise to the same four “midpoints”. (It
is an interesting exercise to identify the family of quadrilaterals corresponding
to a given set of four midpoints.)

(c) As in parts (a) and (b),

p “
1

2
pv `wq,q “

1

2
pw ` xq, r “

1

2
px` yq, s “

1

2
py ` zq, t “

1

2
pz` vq.

Hence
p` q` r` s` t “ v `w ` x` y ` z

so

v “ pp` q` r` s` tq ´ pw ` xq ´ py ` zq “ p´ q` r´ s` t

w “ pp` q` r` s` tq ´ px` yq ´ pz` vq “ p` q´ r` s´ t

x “ pp` q` r` s` tq ´ pv `wq ´ py ` zq “ ´p` q` r´ s` t

y “ pp` q` r` s` tq ´ pw ` xq ´ pz` vq “ p´ q` r` s´ t

z “ pp` q` r` s` tq ´ pv `wq ´ px` yq “ ´p` q´ r` s` t.

97.

(a)(i) As in Problems 93-95 we instinctively add to get

2px` y ` zq “ 6

so
x` y ` z “ 3.

Hence

x “ 3´ py ` zq “ 1

y “ 3´ px` zq “ 0

z “ 3´ px` yq “ 2.

(ii) The same idea (replacing addition by multiplication) leads to

2ˆ 4ˆ 8 “ 64 “ uv ¨ vw ¨ wu “ puvwq2

so uvw “ ˘8. Hence

u “
uvw

vw
“
˘8

4
“ ˘2

v “
uvw

uw
“
˘8

8
“ ˘1

w “
uvw

uv
“
˘8

2
“ ˘4.

6 pu, v, wq “ p2, 1, 4q or p´2,´1,´4q.
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Note: Alternatively, we may notice that u, v, w are either all positive, or all
negative. If we restrict in the first instance to purely positive solutions, then
we may set u “ 2x, v “ 2y, w “ 2z, translate (ii) into (i), and conclude that
px, y, zq “ p1, 0, 2q, so that pu, v, wq “ p2, 1, 4q. We must then remember the
negative solution pu, v, wq “ p´2,´1,´4q.

(b)(i) As in (a)(i) we add to get 2px` y ` zq “ 9, so x` y ` z “ 9
2
. Hence

x “
9

2
´ py ` zq “

3

2

y “
9

2
´ px` zq “

1

2

z “
9

2
´ px` yq “

5

2
.

(ii) The same idea leads to

6ˆ 10ˆ 15 “ 900 “ uv ¨ vw ¨ wu “ puvwq2,

so uvw “ ˘30.

Hence

u “
uvw

vw
“
˘30

10
“ ˘3

v “
uvw

uw
“
˘30

15
“ ˘2

w “
uvw

uv
“
˘30

6
“ ˘5.

Either u, v, w are all positive, or all negative.
6 pu, v, wq “ p3, 2, 5q or p´3,´2,´5q.

(iii) The same idea leads to

6ˆ 10ˆ 30 “ 2ˆ 900 “ vw ¨ wu “ puvwq2,

so uvw “ ˘30
?

2. Hence

u “
uvw

vw
“
˘30

?
2

10
“ ˘3

?
2

v “
uvw

uw
“
˘30

?
2

15
“ ˘2

?
2

w “
uvw

uv
“
˘30

?
2

6
“ ˘5

?
2.

Either u, v, w are all positive, or all negative.
6 pu, v, wq “ p3

?
2, 2
?

2, 5
?

2q or p´3
?

2,´2
?

2,´5
?

2q.

(iv) We could of course repeat the same method.
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Or we could again look in the first instance for positive solutions, notice that
4 “ 22, 8 “ 23, 16 “ 24, and take logs (to base 2). Then

log2 u` log2 v “ 2

log2 v ` log2 w “ 3

log2 u` log2 w “ 4,

so (from part (i)) any positive solution satisfies

log2 u “
3

2
, log2 v “

1

2
, log2 w “

5

2
,

so
pu, v, wq “ p2

?
2,
?

2, 4
?

2q.

We must then remember to include

pu, v, wq “ p´2
?

2,´
?

2,´4
?

2q.

98. The simplest idea is to take logs, and reduce the system to a familiar linear
system:

a ¨ log u` b ¨ log v “ logm

c ¨ log u` d ¨ log v “ logn.

Multiplying the first equation by c and subtracting it from the second equation
multiplied by a gives:

log v “
a ¨ logn´ c ¨ logm

ad´ bc
.

Multiplying the first equation by d and subtracting b times the second equation
gives:

log u “
d ¨ logm´ b ¨ logn

ad´ bc
.

If the numerators and denominators are expressed in determinant form, we get the
2ˆ 2 version of Cramer’s Rule. The original unknowns u, v can then be obtained
by taking suitable powers.

What emerges looks interesting:

u “ m
d

ad´bc ¨ n´
b

ad´bc

v “ m´
c

ad´bc ¨ n
a

ad´bc

but it is not clear how it generalises.

99.

(a) x`y`z “ 3 is the equation of a plane through the three points p3, 0, 0q, p0, 3, 0q,
p0, 0, 3q.
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x2 ` y2 ` z2 “ c is the equation of a sphere, centered at the origin, with radius
?
c. The sphere misses the plane completely when c ă 3, meets the plane in a

single point when c “ 3, and cuts the plane in a circle C when c ą 3 (the circle
lying in the positive octant provided c ă 9).

If xy ` yz ` zx “ b meets this intersection at all, then any permutation of the
three coordinates x, y, z produces another point which also satisfies the other
two equations (since they are both symmetrical). Hence for the system to have
a unique solution, the circle C must contain a point with x “ y “ z. Hence
c “ 3, and b “ 3, and the unique solution is

px, y, zq “ p1, 1, 1q.

(b) We must have c ě 0 for any solution. If c “ 0, then for a unique solution, we
must have x “ y “ z “ 0, so a “ b “ 0. If we exclude this case, then we may
assume that c ą 0.

x` y ` z “ a

is the equation of a plane through the three points pa, 0, 0q, p0, a, 0q, p0, 0, aq.

x2 ` y2 ` z2 “ c

is the equation of a sphere, centre the origin, with radius
?
c, which misses the

plane completely when c ă a2

3
, meets the plane in a single point when c “ a2

3
,

and cuts the plane in a circle C when c ą a2

3
(the circle lying in the positive

octant provided c ă a2).

If
xy ` yz ` zx “ b

meets this intersection at all, then any permutation of the three coordinates x, y,
z produces another point which also satisfies the other two equations (since they
are both symmetrical). Hence for the system to have a unique solution, the circle
C must contain a point with x “ y “ z. Hence that point is x “ y “ z “ a

3
, so

c “ a2

3
“ b, and the unique solution is

px, y, zq “
´a

3
,
a

3
,
a

3

¯

.

100. | ´ x| is never negative. If x ě 0, then | ´ x| “ x; if x is negative, then ´x is
positive, so | ´ x| “ ´x.

Note: We need to learn to see both x and ´x as algebraic entities, with x as a
placeholder (which may well be negative, in which case ´x would be positive).

101.

(a) The interval r0.1, 0.2q. We have marked exactly 1
10

of the interval r0, 1q.
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(b) This needs a little thought. First we mark the interval r0.1, 0.2q, of length 1
10

.
Then we mark 9 smaller intervals

r0.01, 0.02q, r0.21, 0.22q, . . . , r0.91, 0.92q

of total length 9 ¨
`

1
10

˘2
. Then 92 smaller intervals

r0.001, 0.002q, r0.021, 0.022q, . . . , r0.991, 0.992q

of total length 92
¨
`

1
10

˘3
. And so on.

r0.1, 0.2q

Y r0.01, 0.02q Y r0.21, 0.22q Y r0.31, 0.32q Y r0.41, 0.42q

Y r0.51, 0.52q Y r0.61, 0.62q Y r0.71, 0.72q

Y r0.81, 0.82q Y r0.91, 0.92q

Y r0.001, 0.002q Y r0.021, 0.022q Y r0.031, 0.032q Y ¨ ¨ ¨

Y ¨ ¨ ¨

It would seem that a vast number of points are left unmarked – namely, every
point whose decimal representation uses only 0s, 2s, 3s, 4s, 5s, 6s, 7s, 8s, and
9s. However, the total length of the marked intervals is given by adding:

1

10
` 9 ¨

ˆ

1

10

˙2

` 92
¨

ˆ

1

10

˙3

` 93
¨

ˆ

1

10

˙4

` 94
¨

ˆ

1

10

˙5

` 95
¨

ˆ

1

10

˙6

` ¨ ¨ ¨

That is an infinite geometric series with first term a “ 1
10

and common ratio
r “ 9

10
, and hence with sum “ 1. In other words, the total length of what

remains unmarked is zero.

(c) p0, 1q: every real number except 0 has an expansion in base 2 with a “1” in
some position. So this time nothing is left unmarked (except 0). Hence the
complement of the set of marked points consists simply of one point, namely
t0u. So it is not surprising that the total of all the marked intervals has length
1.

(d) First we mark the interval r0.1, 0.2q, of length 1
3
. Then we mark 2 smaller

intervals
r0.01, 0.02q, r0.21, 0.22q

of total length 2 ¨
`

1
3

˘2
. Then 22 smaller intervals

r0.001, 0.002q, r0.021, 0.022q, r0.201, 0.202q, r0.221, 0.222q

of total length 22
¨
`

1
3

˘3
. And so on.

r0.1, 0.2q

Y r0.01, 0.02q Y r0.21, 0.22q

Y r0.001, 0.002q Y r0.021, 0.022qq Y r0.201, 0.202q Y r0.2201, 0.02202q

Y ¨ ¨ ¨
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The set of marked points is the complement of the famous Cantor set (Georg
Cantor (1845–1918)) and has total length

1

3
` 2 ¨

ˆ

1

3

˙2

` 22
¨

ˆ

1

3

˙3

` 23
¨

ˆ

1

3

˙4

` 24
¨

ˆ

1

3

˙5

` 25
¨

ˆ

1

3

˙6

` ¨ ¨ ¨

This is an infinite geometric series with first term a “ 1
3

and common ratio
r “ 2

3
, and so has sum “ 1.

Hence, the total length of what remains unmarked is zero.

Note: The set described in (d) leaves as its complement a collection of points –
the Cantor set – which consists of the “endpoints” of the intervals that have been
removed; these are points whose base 3 expansion involves only 0s and 2s. This
complement:

(i) is “the same size” as the whole interval r0, 1s (since if we interpret the 2s in the
base 3 expansion as 1s, we get a correspondence between the set of “endpoints”
and the set of all possible base 2 expansions for real numbers in r0, 1s);

(ii) is “nowhere dense” (since every pair of points in the complement is separated
by some interval)

(ii) has total length “ 0.

102. (2, 3]. Each inequality implies all the ones before it. Hence the two which
are true must be the first two. Hence x ď 3, and x ą 2.

103. If x´ 5 ě 0, then we must solve x´ 5 “ 3; so x “ 8; if x´ 5 ă 0, we must
solve x´ 5 “ ´3, so x “ 2.

Note: The fact that |x| denotes the positive value of the pair tx,´xu can be
rephrased as: |x| is equal to the distance from x to 0.

In the same way, |x´ 5| denotes the positive member of the pair

tx´ 5,´px´ 5qu

so |x´ 5| is equal to the distance from x´ 5 to 0 (i.e. the distance from x to 5).

This is a very important way to think about expressions like |x´ 5|.

104.

(a) r´3,´2q Y p2, 3s. (Each inequality implies all those that go before it. So we
need solutions to |x| ą 1 and |x| ą 2, which satisfy |x| ď 3.)

(b) p4, 6s. (Each inequality implies the one before it. To see this, think in terms of
distances: we want points x whose distance from 1 is ą 1, whose distance from
2 is ą 2, etc.. So we need to find points x which solve the first two inequalities,
but not the third. Points in the half line p´8, 0q satisfy all seven inequalities,
so we are left with p4, 6s.)
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105.
 

´ 5
2
,´ 1

2

(

. (We need all points x for which

“the distance from x to ´1” plus “the distance from x to ´2”

equals 2. This excludes all points between ´2 and ´1, for which the sum is equal
to 1; for points between ´ 5

2
and ´ 1

2
the sum is ă 2; for points in

`

´8,´ 5
2

˘

or
`

´ 1
2
,8

˘

the sum is ą 2.)

106. a “ 1
2
, b “ 3

2
. (For solutions to exist, we must have b ą 0. The solutions of

the given inequality then consist of all x such that

“the distance from x to a is less than b”

that is, all x in the interval pa´ b, a` bq. Hence a´ b “ ´1, a` b “ 2.)

107.

(a) “The difference between the x- and y-coordinates is ă 3”, means that the point
px, yq lies in the infinite strip between the lines x´ y “ ´3 and x´ y “ 3.

(b) Shifting the origin of coordinates to p´5, 0q changes the x-coordinate to “X “

x` 5” and leaves the y-coordinate unaffected (so Y “ y). In this new frame we
want “|X ´ Y | ă 3”, so the required points lie in the infinite strip between the
lines X ´Y “ ´3 and X ´Y “ 3; that is, between the lines x´ y` 5 “ ´3 and
x´ y ` 5 “ 3.

(c) x ą 0 and y ą 0, or x ă 0 and y ă 0. (For any solution at all, we must have
|x ` y| ą 0, which excludes points on the line x ` y “ 0. Divide both sides by
|x` y| and simplify to get

ˇ

ˇ

ˇ

ˇ

1´
2y

x` y

ˇ

ˇ

ˇ

ˇ

ă 1.

In other words:

0 ă
2y

x` y
ă 2.

If y ą 0, then x` y ą 0, so 2x` 2y ą 2y, whence x ą 0 (so “x ą 0 and y ą 0”).
If y ă 0, then x` y ă 0, so 2x` 2y ă 2y, whence x ă 0 (so “x ă 0 and y ă 0”).
If x ą 0 and y ą 0, or x ă 0 and y ă 0, then clearly |x´ y| ă |x` y|.)

108. Let
x “

a

b
ă
c

d
“ y.

(i) Since x ă y, it follows that

x´
x

2
“
x

2
ă
y

2
,

so x ă x`y
2

; moreover x
2
ă y ´ y

2
, so x`y

2
ă y.
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(ii) Since a
b
ă c

d
and b, d ą 0, we can multiply both sides by bd to get ad ă bc.

Therefore
apb` dq “ ab` ad ă ba` bc “ bpa` cq,

and
pa` cqd “ ad` cd ă bc` dc “ pb` dqc.

6 a
b
ă a`c

b`d
, and a`c

b`d
ă c

d
(since b, d, and b` d are all ą 0, so we can divide the

first inequality by bpb` dq and the second by dpb` dq).

109.

(a)

0

1
ă

1

7
ă

1

6
ă

1

5
ă

1

4
ă

2

7
ă

1

3
ă

2

5
ă

3

7
ă

1

2
ă

4

7
ă

3

5
ă

2

3
ă

5

7
ă

3

4
ă

4

5
ă

5

6
ă

6

7
ă

1

1

(b)(i) It is tempting simply to consider the decimals

1

9
“ 0.111 . . . ,

2

9
“ 0.222 . . . ,

3

9
“ 0.333 . . . , . . . ,

8

9
“ 0.888 . . .

in order to conclude that these fractions miss the first and last subinterval,
and then fall one in each of the remaining subintervals. In preparation for
part (ii), it is better to observe that

∗ 1
10
ă 1

9
and 8

9
ă 9

10
, so none of the 9ths land up in the first or last

subintervals;

∗ then rewrite

1

9
“

1

10
`

1

90
,

2

9
“

2

10
`

2

90
,

3

9
“

3

10
`

3

90
, . . . ,

8

9
“

8

10
`

8

90

and notice that
0

10
ă

1

90
ă ¨ ¨ ¨ ă

8

90
ă

1

10
,

so that, for 1 ď m ď 9,
m

10
ă
m

9
ă
m` 1

10
;

hence exactly one 9th goes in each of the other eight subintervals.

(ii) Notice that

∗ 1
n`1

ă 1
n

and n´1
n
ă n

n`1
, so none of the nths land up in the first or last

subintervals;

∗ then rewrite

1

n
“

1

n` 1
`

1

npn` 1q
,

2

n
“

2

n` 1
`

2

npn` 1q
, . . . ,

n´ 1

n
“
n´ 1

n` 1
`

n´ 1

npn` 1q

and notice that

0

n` 1
ă

1

npn` 1q
ă ¨ ¨ ¨ ă

n´ 1

npn` 1q
ă

1

n` 1
,
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so, for 1 ď m ď n,
m

n` 1
ă
m

n
ă
m` 1

n` 1
;

hence exactly one nth goes in each of the other n´ 1 subintervals.

(iii) Suppose two (or more) fractions are inserted between a
b

and c
d
. Then these

two fractions would have to be successive multiples of 1
n`1

; but then they

would have a multiple of 1
n

between them (by part (ii)), and this would be a
term of the Farey series of order n sitting between a

b
and c

d
. Since there is no

such term, at most one fraction can be inserted between a
b

and c
d
.

(c) Note 1: This problem was included because the idea of Farey series seems
so simple, and their curious properties are so intriguing. While this remains
true, it turns out that Farey series also have something different, and slightly
unexpected, to teach us about “the essence of mathematics”. Part of us expects
that simple-looking results should have short and accessible proofs – even though
we know that Fermat’s Last Theorem shows otherwise. In the case of Farey
series, the relevant properties can be proved in ways that should be accessible
(in principle); but the proofs are not easy. So do not be upset if, after all your
efforts, you land up trying to absorb the solution given here – and the underlying
idea that

simple objects and “elementary” proofs can sometimes be more intricate
than one anticipates.

Note 2: If
a

b
ă
c

d

are consecutive terms in a Farey series, then “bc ´ ad” must be an integer
ą 0. The fact that this difference is always equal to 1 is easily checked in any
particular case, but it is unclear exactly why this is necessarily true (rather than
an accident) – or even how one would go about proving it. Every treatment of
Farey series has to find its own way round this difficulty. We give the simplest
proof we can (in the sense that it assumes no more than we have already used: a
little about numbers and some algebra). But it is not at all “easy”. We indicate
a different approach in the “Notes” at the end of part (d).

(i) [The fact that, except for the two end intervals, we have bd ą n will be needed
in the proof of part (c)(ii).]

We proceed by mathematical induction on n (the “order” of the Farey series)
– a technique which we have already met in Chapter 2 (Problems 54–59, 76)
and which will be addressed more fully in Chapter 6.

∗ When n “ 1, the Farey series of order n is just:

0

1
ă

1

1

and this subinterval is both the first and the last, so the claim is “vacuously
true” (because there is “nothing to check”). When n “ 2, the Farey series
of order n is:

0

1
ă

1

2
ă

1

1
,
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and again the only subintervals are the first and the last, so again there is
nothing to check.

∗ We now suppose that we know the claim is true for the Farey series of order
k, for some k ą 1, and show that it must then also be true for the Farey
series of order k ` 1. (Since we know it is true for n “ 2, it will then be
true for n “ 3; and once we know it is true for n “ 3, it must then be true
for n “ 4; and so on.)
To show that the claim is true for the Farey series of order k`1, we consider
any adjacent pair of fractions

a

b
ă
c

d

(other than the first pair and the last pair) in the Farey series of order k`1.

Claim bd ą k ` 1.

Proof Note first that, since we are avoiding the two end subintervals, both b
and d are ą 1.

Suppose first that the pair a
b
ă c

d
are not adjacent in the previous Farey

series of order k. Then at least one of the two fractions has been inserted in
creating the Farey series of order k`1, and so has denominator “ k`1. (The
fractions inserted are precisely those with denominator “k` 1” which cannot
be reduced by cancelling.) Hence the product

bd ě 2pk ` 1q ą k ` 1.

Thus we may assume that the pair a
b
ă c

d
were already adjacent in the Farey

series of order k. But then by our “induction hypothesis” (namely that the
desired result is already known to be true for the Farey series of order k), we
know that bd ą k. If bd ą k ` 1, then the pair a

b
ă c

d
satisfies the required

condition. Hence we only have to worry about the possibility that bd “ k`1.

Suppose that bd “ k ` 1. Then the interval a
b
ă c

d
has length

bc´ ad

bd
“

r

k ` 1

for some positive integer r “ bc´ ad.

If r ą 1, then the interval would have length ą 1
k`1

, so a
b
ă c

d
would not

be successive terms in the series (for we would have inserted some additional
term when moving from the Farey series of order k to the Farey series of order
k ` 1).

Hence we can be sure that r “ 1, that the subinterval a
b
ă c

d
has length exactly

1
k`1

. Now successive fractions with denominator k ` 1 differ by exactly 1
k`1

,
so some fraction with denominator k+1 must lie in this subinterval. Since
no additional fraction is inserted between them in passing from the series of
order k to the series of order k`1, a

b
and c

d
must both be “cancelled versions”

of two successive fractions with denominator k` 1. But then, by part (b)(ii),
there would have to be a fraction with denominator k in the interval a

b
ă c

d

– which is not the case.
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Therefore the possibility bd “ k ` 1 does not in fact occur.

So we can be sure that in every case, bd ą k ` 1.

Hence whenever the result is true for the Farey series of order k, it must then
also be true for the Farey series of order k ` 1.

It follows that the result is true for the Farey series of order n, for all n ě 1.

QED

(ii) We proceed by induction on n.

∗ If a
b
ă c

d
are adjacent fractions in the Farey series of order 1, then a

b
“ 0

1

and c
d
“ 1

1
, so bc´ ad “ 1.

∗ Now suppose that, for some k ě 1, we already know that the result holds
for any adjacent pair in the Farey series of order k.

Let a
b
ă c

d
be adjacent fractions in the Farey series of order k ` 1.

If a
b
ă c

d
were already adjacent fractions in the Farey series of order k (i.e. if

no fraction has been inserted between a
b

and c
d

in passing from the series of
order k to the series of order k ` 1), then we already know (by the induction
hypothesis) that bc´ ad “ 1.

Thus we may concentrate on the case where a
b
ă c

d
are not adjacent

fractions in the Farey series of order k. By (b)(iii), at most one fraction with
denominator k ` 1 is inserted between any two adjacent fractions in the
Farey series of order k, so we have either

a

b
ă
c

d
ă
e

f
,

with a
b
ă e

f
being adjacent fractions in the Farey series of order k (so

be´ af “ 1), or
e

f
ă
a

b
ă
c

d
,

with e
f
ă c

d
being adjacent fractions in the Farey series of order k (so

fc´ ed “ 1). We consider the first of these possibilities (the second is
entirely similar).

Suppose
a

b
ă
c

d
ă
e

f
,

with a
b
ă e

f
being adjacent fractions in the Farey series of order k. By part

(i) we know that bf ě k ` 1; and by induction we know that be´ af “ 1.
Hence the interval a

b
ă e

f
has length at most 1

k`1
. We have to prove that

bc´ ad “ 1.

Let bc´ ad “ r ą 0, and ed´ fc “ s ą 0.

Then sa` re “ c, and sb` rf “ d.

In particular, HCF pr, sq “ 1 (since HCF pc, dq “ 1).

Hence c
d

belongs to the family

S “

"

xa` ye

xb` yf
: where x, y are any positive integers with HCF px, yq “ 1

*

.
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Since everything is positive, easy algebra shows that

a

b
ă
xa` ye

xb` yf
ă
e

f
,

so every element of S lies between a
b

and e
f

.

As long as we choose x, y such that HCF px, yq “ 1, any common factor of
xa` ye and xb` yf would also divide both

bpxa` yeq ´ apxb` yfq “ pbe´ afqy “ y,

and
epxb` yfq ´ fpxa` yeq “ pbe´ afqx “ x.

Hence
HCF pxa` ye, xb` yfq “ 1

so each element of S is in lowest terms (i.e. no further cancelling is possible).

We have shown that “ c
d

belongs to the family S”, and that all elements of S
fit between a

b
and e

f
; which are adjacent fractions in the Farey series of order

k. So none of the elements of S can have arisen before the series of order
k ` 1. But each fraction in S arises at some stage in a Farey series.

And the first to arise (because it has the smallest denominator) is “a`e
b`f

”.
Hence

c

d
“
a` e

b` f
,

so r “ s “ 1, and bc´ ad “ 1 as required. QED

(d) Let
a

b
ă
c

d
ă
e

f

be three successive terms in any Farey sequence. By (c) we know that bc´ad “ 1,
and that de´ cf “ 1. In particular, bc´ ad “ de´ cf , so

c

d
“
a` e

b` f
.

Note 1: It may not be clear why we are proving this result “again” – since it
appeared in the final line of the solution to part (c). However, in part (c) the
statement that

c

d
“
a` e

b` f

was arrived at within the induction step, and so was subject to other assumptions.
In contrast, now that the result in part (c) has been clearly established, we can
use it to prove part (d) without any hidden assumptions.

Note 2: If we represent each fraction a
b

in the Farey series of order n by the
point pb, aq, then each point lies in the right angled triangle joining p0, 0q, pn, 0q,
and pn, nq, and each fraction in the Farey series is equal to the gradient of the
line, or vector, joining the origin to the integer lattice point pb, aq. The ordering
of the fractions in the Farey series corresponds to the sequence of increasing
gradients, from 0

1
up to 1

1
. If a

b
and e

f
are adjacent fractions in some Farey
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series, then the result in (d) says that the next fraction to be inserted between
them is a`e

b`f
corresponding to the vector sum of pb, aq and pf, eq. And the result

in (c) says that the area of the parallelogram with vertices p0, 0q, pb, aq, pf, eq,
pb` f, a` eq is equal to 1 (see Problem 57(b)). Hence the result in (c) reduces
to the fact that

Theorem Any parallelogram, whose vertices are integer lattice points
(i.e. points pb, aq where both coordinates are integers), and with no
additional lattice points inside the parallelogram or on the four sides,
has area 1.

110.

(a) Suppose that x satisfies x` 1
x
ă 2. Then x ‰ 0 (or 1

x
is not defined).

6 x2`1
x

ă 2.
If x ą 0, then x2 ´ 2x` 1 “ px´ 1q2 ă 0, which has no solutions.
6 x ă 0, in which case x satisfies x` 1

x
ă 0 ă 2, so every x ă 0 is a solution of

the original inequality.

(b) Suppose x satisfies x ď 1` 2
x

. Again x ‰ 0 (or 1
x

is not defined).

(i) If x ą 0, then x2 ´ x´ 2 “ px´ 2qpx` 1q ď 0.
6 ´1 ď x ď 2 (and x ą 0); hence 0 ă x ď 2, and all such x satisfy the
original inequality.

(ii) If x ă 0, then x2 ´ x´ 2 ě 0, so px´ 2qpx` 1q ě 0.
6 either x ď ´1, or x ě 2 (and x ă 0); hence x ď ´1, and all such x satisfy
the original inequality.

(c) Suppose x satisfies
?
x ă x` 1

4
.

6 4 p
?
xq

2
´ 4
?
x` 1 ą 0

6 p2
?
x´ 1q2 ą 0, so x ‰ 1

4
, and all such x satisfy the original inequality.

111.

(a) If a` b “ 5 and ab “ 7, then a, b are solutions of

px´ aqpx´ bq “ x2 ´ 5x` 7 “ 0.

But the roots of this quadratic equation are

5˘
?

25´ 28

2
“

5˘
?
´3

2
,

so a and b cannot be “positive reals”.

(b) We abbreviate the “arithmetic mean” by AM, the “geometric mean” by GM,
the “harmonic mean” by HM, and the “quadratic mean” by QM.

´?
a´

?
b
¯2

ě 0
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so
a` b ě 2

?
ab

therefore
?
ab ě

2ab

a` b
(GM ě HM)

and
?
ab ď

a` b

2
(GM ď AM).

Also
ˆ

a´ b

2

˙2

ě 0,

so
a2 ` b2

4
ě

2ab

4

whence
a2 ` b2

2
ě
a2 ` b2 ` 2ab

4
“

ˆ

a` b

2

˙2

.

Therefore
c

a2 ` b2

2
ě
a` b

2
(QM ě AM). QED

112. [This delightful problem was devised by Oleksiy Yevdokimov.] We need
to find something which remains constant, or which does not increase, when we
replace two terms a, b by a`b?

2
.

Idea: If the two terms a, b were replaced each time by their sum a ` b, then the
sum of all the numbers in the list would be unchanged, so we could be sure that
the final number after 199 such moves would have to be

1` 2` 3` ¨ ¨ ¨ ` 200 “
200ˆ 201

2
.

This doesn’t work here. However, in the spirit of this section on inequalities,
one may ask:

What happens to the sum of the squares of the terms in the list after
each move?

When we move from one list to the next, only two terms are affected, and for these

two terms, the previous sum of squares is replaced by
´

a`b?
2

¯2

. How does this affect

the sum of all squares on the list?

We know that a2`b2 ě 2ab for all a, b. And it is easy to see that this is equivalent
to:

a2 ` b2 ě

ˆ

a` b
?

2

˙2

.

So when we replace two terms a, b by a`b?
2

, the sum of the squares of all the terms
in the list never increases. Hence the final term is less than or equal to the square
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root of the initial sum of squares

12
` 22

` 32
` ¨ ¨ ¨ ` 2002

“
200ˆ 201ˆ 401

6
pby Problem 62q

ă
200ˆ 300ˆ 400

6

“ 4ˆ 106.

6 the final term is ă
?

4ˆ 106 “ 2000.

113.

(a)(i) 3 “ 22
´ 1.

(ii) It seems hard to find another.

(b)(i) 2 “ 12
` 1.

(ii) 5 “ 22
` 1 (or 17 “ 42

` 1; or 37 “ 62
` 1; or 101 “ 102

` 1; or . . . ). In other
words, there seem to be lots.

Note: At first sight primes of this form “keep on coming”. Given that we now
know (see Problem 76) that the list of all prime numbers “goes on for ever”, it
is natural to ask: Are there infinitely many prime numbers “one more than a
square”? Or does the list run out?

This is one of the simplest questions one can ask to which the answer is not yet
known!

(c)(i) 7 “ 23
´ 1.

(ii) It seems hard to find another.

(d)(i) 2 “ 13
` 1.

(ii) It seems hard to find another.

Note: Parts (a), (c) and (d) should make one suspicious – provided one notices
that:

(a) 63 “ 7ˆ 9, 143 “ 11ˆ 13, 323 “ 17ˆ 19;

(c) 511 “ 7ˆ 73, 1727 “ 11ˆ 157;

(d) 217 “ 7ˆ 31, 513 “ 9ˆ 57, 1001 “ 7ˆ 143.

This problem is so instructive that its solution is discussed in the main text
following Problem 115.

114.
x4 ` 1 “

´

x2 `
?

2 ¨ x` 1
¯´

x2 ´
?

2 ¨ x` 1
¯

.

(Suppose
x4 ` 1 “

`

x2 ` ax` b
˘ `

x2 ` cx` d
˘

.
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It is natural to try b “ d “ 1 in order to make the constant term bd “ 1, and then
to try c “ ´a (so that the coefficients of x3 and of x are both 0). It then remains
to choose the value of a so that the total coefficient “2´ a2” of all terms in x2 is
equal to 0: that is, a “

?
2.)

115.

(a)(i)
a3 ´ b3 “ pa´ bqpa2 ` ab` b2q.

(ii)

a4 ´ b4 “ pa´ bq
`

a3 ` a2b` ab2 ` b3
˘

“
`

a2 ´ b2
˘ `

a2 ` b2
˘

“ pa´ bqpa` bq
`

a2 ` b2
˘

.

(iii)
an ´ bn “ pa´ bq

`

an´1
` an´2b` an´3b2 ` ¨ ¨ ¨ ` abn´2

` bn´1
˘

.

Note: The general factorisation

xn ´ 1 “ px´ 1q
`

xn´1
` xn´2

` ¨ ¨ ¨ ` x2 ` x` 1
˘

provides a fresh slant on the test for divisibility by 9 in base 10, or in general for
divisibility by b´ 1 in base b (see Problem 51):

“an integer written in base b is divisible by b´ 1 precisely when its digit
sum is divisible by b´ 1”.

(b) (i)
a3 ` b3 “ pa` bq

`

a2 ´ ab` b2
˘

.

(ii)
a5 ` b5 “ pa` bqpa4 ´ a3b` a2b2 ´ ab3 ` b4q.

(iii)

a2n`1
` b2n`1

“ pa`bq
`

a2n ´ a2n´1b` a2n´2b2 ´ a2n´3b3 ` ¨ ¨ ¨ ´ ab2n´1
` b2n

˘

.

116.

(a) Replace a by 1, b by r, and n by n` 1 in the answer to 115(a)(iii), to see that:

1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rn “
1´ rn`1

1´ r
.

(b) Multiply the closed formula in (a) by “a” to see that:

a` ar ` ar2 ` ar3 ` ¨ ¨ ¨ ` arn “ a ¨
1´ rn`1

1´ r
.
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117. When x “ 40,

fpxq “ x2 ` px` 40q ` 1 “ 402
` 2ˆ 40` 1 “ 412

is not prime. So the sequence of prime outputs must stop some time before fp40q.
But it in fact keeps going as long as it possibly could, so that

fp0q, fp1q, fp2q, . . . , fp39q

are all prime. (This may explain Euler’s delight.)

Note: The links between polynomials with integer coefficients (even lowly
quadratics) and prime numbers are still not fully understood. For example, you
might like to look up Ulam’s spiral. (Ulam (1909–1984) plotted the positive
integers in a square spiral and found the primes arranging themselves in curious
patterns that we still do not fully understand.)

Interest in the connections between polynomials and primes was revived in the
second half of the 20th century. It was eventually proved that there exists a
polynomial in 10 variables, with integer coefficients, which takes both positive and
negative values when the variables run through all possible non-negative integer
values, but which does so in such a way that it generates all the primes as the set
of positive outputs.

118.

(a)(i) For
an ´ 1 “ pa´ 1q

`

an´1
` an´2

` ¨ ¨ ¨ ` a` 1
˘

to be prime, the smaller factor must be “ 1, so a “ 2.

If n is not prime, we can factorise n “ rs, with r, s ą 1. Then

2n ´ 1 “ 2rs ´ 1 “ p2rqs ´ 1 “ p2r ´ 1q
´

2rps1q ` 2rps2q ` ¨ ¨ ¨ ` 2` 1
¯

;

Hence 2n1 also factorises, so could not be prime. Hence n must be prime.

(ii) 22
´ 1 “ 3, 23

´ 1 “ 7, 25
´ 1 “ 31, 27

´ 1 “ 127 are all prime; 211
´ 1 “

2047 “ 23ˆ 89 is not.

Note: This is a simple example of the need to distinguish carefully between
the statement

“if 2n ´ 1 is prime, then n is prime” (which is true),

and its converse

“if n is prime, then 2n ´ 1 is prime” (which is false).

(b)(i) Suppose that a ą 1. Then an ` 1 ą 2; so for an ` 1 to be prime, it must be
odd, so a must be even.
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If n has an odd factor m ą 1, we can write n “ km. Then

an ` 1 “ akm ` 1

“ pakqm ` 1

“ pak ` 1q
´

akpm´1q
´ akpm´2q

` ¨ ¨ ¨ ´ ak ` 1
¯

.

Since m is odd and ą 1, we have m ě 3. It is then easy to show that

ak ` 1 ď akpm´1q
´ akpm´2q

` ¨ ¨ ¨ ´ ak ` 1.

And since a ą 1, neither factor “ 1, so an ` 1 can never be prime. Hence n
can have no odd factor ą 1, which is the same as saying that n “ 2r must be
a power of 2.

(ii) 21
` 1 “ 3, 22

` 1 “ 5, 24
` 1 “ 17, 28

` 1 “ 257, 216
` 1 “ 65 537 are all

prime. (The very next such expression

232
` 1 “ 4 294 967 297 “ 641ˆ 6 700 417

is not prime.)

Note: The sad tale of Fermat’s claim that “all Fermat numbers are prime” shows
that mathematicians are not exempt from the obligation to distinguish carefully
between a statement and its converse!

119.

(a) x2´ 3x` 2 “ px´ 2qpx´ 1q “ 0 precisely when one of the brackets “ 0; that is,
x “ 2, or x “ 1.

(b) x2 ´ 1 “ px´ 1qpx` 1q “ 0 precisely when x “ 1 or x “ ´1.

(c) x2 ´ 2x` 1 “ px´ 1q2 “ 0 precisely when x “ 1 (a repeated root).

(d) x2 `
?

2x´ 1 “ 0 requires us

– to complete the square

x2 `
?

2x´ 1 “

ˆ

x`

?
2

2

˙2

´ 1´
1

2
,

so

x`

?
2

2
“ ˘

c

3

2
,

– or to use the quadratic formula:

x “
´
?

2˘
?

2` 4

2
.

(e) x2 ` x´
?

2 “ 0 requires us
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– to complete the square

x2 ` x´
?

2 “

ˆ

x`
1

2

˙2

´
?

2´
1

4
,

so

x`
1

2
“ ˘

c

?
2`

1

4

– or to use the quadratic formula:

x “
´1˘

a

1` 4
?

2

2
.

(f) x2 ` 1 “ 0 yields x “ ˘
?
´1.

(g) x2 `
?

2x` 1 “ 0 yields

x “
´
?

2˘
?

2´ 4

2
“
´
?

2˘
?
´2

2
.

120. qpxq “ x2 ´
?

2 ¨ x` 1. (There is no obvious magic method here. However,
it should be natural to try to insert a term

?
2 ¨ x in qpxq to “resolve” the term?

2 ¨ x in ppxq; and the familiar cancelling of cross terms in pa ` bqpa ´ bq should
then suggest the possible benefit of trying qpxq “ x2 ´

?
2 ¨ x` 1.)

Note: ppxqqpxq “ x4 ` 1 (see Problem 114).

121.

(a) Let the two unknown numbers be α and β. Then s “ α` β, and p “ αβ. “The

square of half the sum”
`

s
2

˘2
“

`

α`β
2

˘2
.

Subtracting p “ αβ produces
`

α´β
2

˘2
whose “square root” will be either α´β

2
,

or ´
`

α´β
2

˘

– whichever is positive.

Adding this to “half the sum” gives one root; subtracting gives the other root.

(b) Let the length of one side be x. We are told that x2 ` bx “ c.

“Take half of b, square it, and add the result to c”

translates as:

“Rewrite the equation as:
`

x` b
2

˘2
“ c`

`

b
2

˘2
.”

That is, we have “completed the square”
`

x` b
2

˘2
. If we now take the (positive)

square root and subtract b
2
, we get a single value for x, which determines the

side length of my square as required.

If the same method is applied to the general quadratic equation

ax2 ` bx` c “ 0,
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with the extra initial step of “multiply through by 1
a

”, we produce first

x2 `
b

a
x`

c

a
“ 0,

then
ˆ

x`
b

2a

˙2

`

˜

c

a
´

ˆ

b

2a

˙2
¸

“ 0,

then

x`
b

2a
“ ˘

d

ˆ

b

2a

˙2

´
c

a
“
˘
?
b2 ´ 4ac

2a
,

which leads to the familiar quadratic formula.

(c) See Problem 3(c)(iv). AD : CB “ DX : BX, so x : 1 “ 1 : px ´ 1q. Hence
x2 ´ x ´ 1 “ 0. If we use the quadratic formula derived in the answer to part

(b) above, and realise that x ą 1, then we obtain x “ 1`
?
5

2
.

Note: The procedure given in (a) dates back to the ancient Babylonians („ 1700
BC) and later to the ancient Greeks („ 300 BC). Both cultures worked without
algebra. The Babylonians gave their verbal procedures as recipes in words, in the
context of particular examples. The Greeks expressed everything geometrically.
In modern language, if we denote the unknown numbers by α and β, then

px´ αqpx´ βq “ x2 ´ pα` βqx` αβ.

Being told the sum and product is therefore the same as being given the coefficients
of a quadratic equation, and being asked to find the two roots.

Our method for factorizing a quadratic involves a mental process of ‘inverse
arithmetic’, where we juggle possibilities in search of α and β, when all we know
are the coefficients (that is, the sum α` β, and the product αβ).

The procedure in (b) also dates back to the ancient Babylonians, and is essentially
our process of completing the square. It was given as a procedure, without our
algebraic notation. The Babylonians seem not to have been hampered (as the
Greeks were) by the fact that it makes no sense to add a length and an area! They
worded things geometrically, but seem to have understood that they were really
playing numerical games (an idea which European mathematicians found elusive
right up to the time of Descartes (1590–1656)).

Similarly, the modern use of symbols – allowing one to represent either positive or
negative quantities – was widely resisted right into the nineteenth century. What
we would write as a single family of quadratic equations, ax2`bx`c “ 0, had to be
split into separate cases where two positive quantities were equated. For example,
the groundbreaking book Ars Magna in which Cardano (1501–1576) explained how
to solve cubic and quartic equations begins with quadratics – where his procedure
distinguishes four different cases: “squares equal to numbers”, “squares equal to
things”, “squares and things equal to numbers”, “squares and numbers equal to
things”.
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122.

(a)(i) α2
` β2

“ pα` βq2 ´ 2αβ “ b2 ´ 2c.

(ii) α2β ` β2α “ αβpα` βq “ c ¨ p´bq “ ´bc.

(iii) We rearrange

α3
` β3

´ 3αβ “ pα` βq
`

α2
´ αβ ` β2

˘

´ 3αβ

“ p´bq ¨
`

b2 ´ 3c
˘

´ 3c

“ ´b3 ` 3bc´ 3c.

[Alternatively: α3
` β3

“ pα` βq3 ´ 3αβpα` βq, etc.]

(b)(i) [Cf 121(a).] pα´ βq2 “ pα` βq2 ´ 4αβ.

Therefore
α´ β “

?
b2 ´ 4c if α ě β,

and
α´ β “ ´

?
b2 ´ 4c if α ă β.

(ii)
α2β ´ β2α “ ´αβpα´ βq “ ´c

?
b2 ´ 4c if α ě β,

and
α2β ´ β2α “ ´αβpα´ βq “ c

?
b2 ´ 4c if α ă β.

(iii) α3
´ β3

“ pα´ βqpα2
` αβ ` β2

q.

Therefore
α3
´ β3

“

”?
b2 ´ 4c

ı

`

b2 ´ c
˘

if α ě β,

and
α3
´ β3

“

”

´
?
b2 ´ 4c

ı

`

b2 ´ c
˘

if α ă β.

123.

(a)(i)
?
a`

?
b and

a

a` b`
?

4ab are both positive. And it is easy to check that
they have the same square:

´?
a`

?
b
¯2

“ a` b` 2
?
ab,

and
ˆb

a` b`
?

4ab

˙2

“ a` b`
?

4ab.

Hence
?
a`

?
b “

b

a` b`
?

4ab.

(ii) 5 “ 2` 3, and 24 “ 4ˆ 2ˆ 3;
Therefore

b

2` 3`
?

4ˆ 2ˆ 3 “
?

2`
?

3

(which is easy to check).
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(b)(i) Claim If a ě b (‰ 0), then

?
a´

?
b “

b

a` b´
?

4ab.

Proof
?
a´

?
b and

a

a` b´
?

4ab are both ě 0 (Why?). And it is easy to
check that

´?
a´

?
b
¯2

“ a` b´ 2
?
ab,

and
ˆb

a` b´
?

4ab

˙2

“ a` b´
?

4ab. QED

(ii) Simplify
a

5´
?

16 and
a

6´
?

20.

5 “ 4` 1 and 16 “ 4ˆ 4ˆ 1, so
a

5´
?

16 “
?

4´
?

1 “ 1.

Actually, there is a simpler solution:

b

5´
?

16 “
?

5´ 4 “
?

1 “ 1.

6 “ 5` 1 and 20 “ 4ˆ 5ˆ 1, so
a

6´
?

20 “
?

5´
?

1 “
?

5´ 1.

124.

(a) Let α “ 1 `
?

2. Then α2
“ 3 ` 2

?
2. Hence α2

´ 2α “ 1, so α satisfies the
quadratic polynomial equation x2 ´ 2x´ 1 “ 0.

Note: Observe that the resulting polynomial is equal to

´

x´
´

1`
?

2
¯¯´

x´
´

1´
?

2
¯¯

.

In other words, to rationalize the coefficients, we need a polynomial which has
both α “ 1`

?
2 and its “conjugate” 1´

?
2 as roots.

(b) Let α “ 1 `
?

3. Then α2
“ 4 ` 2

?
3. Hence α2

´ 2α “ 2, so α satisfies the
quadratic polynomial equation x2 ´ 2x´ 2 “ 0.

Note: Observe that the resulting polynomial is equal to

´

x´
´

1`
?

3
¯¯´

x´
´

1´
?

3
¯¯

.

In other words, to rationalize the coefficients, we need a polynomial which has
both α “ 1`

?
3 and its “conjugate” 1´

?
3 as roots.

(c) Let α “
?

2 `
?

3. Then α2
“ 5 ` 2

?
6, so α2

´ 5 “ 2
?

6, and
`

α2
´ 5

˘2
“ 24.

Hence α satisfies the quartic polynomial equation x4 ´ 10x2 ` 1 “ 0.

Note: Observe that the resulting polynomial is equal to

´

x´
´?

2`
?

3
¯¯´

x´
´?

2´
?

3
¯¯´

x´
´

´
?

2`
?

3
¯¯´

x´
´

´
?

2´
?

3
¯¯

.

In other words, the roots are:
?

2`
?

3 (as required), and also
?

2´
?

3, ´
?

2´
?

3,
and ´

?
2`

?
3.
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(d) Let α “
?

2` 1?
3
. Then

α2
“

7

3
` 2

c

2

3
,

so
ˆ

α2
´

7

3

˙2

“
8

3
,

and α satisfies the quartic polynomial equation

x4 ´
14

3
¨ x2 `

25

9
“ 0.

Note:

x4 ´
14

3
¨ x2 `

25

9
“

ˆ

x´

„

?
2`

1
?

3

˙ˆ

x´

„

?
2´

1
?

3

˙

¨

ˆ

x`

„

?
2`

1
?

3

˙ˆ

x`

„

?
2´

1
?

3

˙

,

so the roots are:

x “
?

2`
1
?

3
,
?

2´
1
?

3
, ´
?

2´
1
?

3
, ´
?

2`
1
?

3
.

125. A direct approach can be made to work in both cases (but see the Notes).

(a) Suppose to the contrary that
?

2 `
?

3 “
p
q
, for some integers p, q with

HCF pp, qq “ 1. Then
`

5` 2
?

6
˘

q2 “ p2, so
?

6 is rational, and we can write
?

6 “ r
s

with HCF pr, sq “ 1. But then 6s2 “ r2; hence r “ 2t must be even;
so 3s2 “ 2t2, but then s must be even – contradicting HCF pr, sq “ 1. Hence?

2`
?

3 cannot be rational.

Note: It is slightly easier to rewrite the initial equation in the form

?
3 “

p

q
´
?

2

before squaring to get
ˆ

p

q

˙2

´ 1 “
2p

q

?
2,

which would imply that
?

2 is rational.

(b) Suppose to the contrary that
?

2 `
?

3 `
?

5 “ p
q
, for some integers p, q with

HCF pp, qq “ 1. Then

10` 2
´?

6`
?

10`
?

15
¯

“

ˆ

p

q

˙2

,

so
?

6`
?

10`
?

15 is rational. Squaring
?

6`
?

10`
?

15 then gives that

?
60`

?
90`

?
150 “ 5

?
6` 3

?
10` 2

?
15
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is rational. Subtracting 2p
?

6 `
?

10 `
a

15q then shows that 3
?

6 `
?

10 is
rational, and we can proceed as in part (a) to obtain a contradiction. Hence?

2`
?

3`
?

5 cannot be rational.

Note: It is simpler to rewrite the original equation in the form

?
2`

?
3 “

p

q
´
?

5

before squaring to obtain

5` 2
?

6 “

˜

5`

ˆ

p

q

˙2
¸

´
2p

q

?
5,

whence 2
?

6` 2p
q

?
5 is rational, and we may proceed as in part (a).

126.

(i) We just have to fill in the missing bits of the partial factorisation

x10 ` 1 “
`

x3 ´ 1
˘ `

x7 ` x4 ` ¨ ¨ ¨
˘

` remainder.

To produce the required term x10 we first insert x7. This then creates an
unwanted term “´x7”, so we add `x4 to cancel this out. This in turn creates
an unwanted term “´x4”, so we add `x to cancel this out. Hence the quotient
is x7 ` x4 ` x, and the remainder is “x` 1”:

x10 ` 1 “
`

x3 ´ 1
˘ `

x7 ` x4 ` x
˘

` px` 1q.

Note: It is worth noting a short cut. The factorised term of the form
`

x3 ´ 1
˘ `

x7 ` ¨ ¨ ¨
˘

is equal to zero when x3 “ 1.

So one way to get the remainder is to “treat x3 as if it were equal to 1”. Then

x10 “
`

x3
˘3
¨ x

is just like 1 ¨ x, and x10 ` 1 behaves as if it were equal to x ` 1, which is the
remainder.

(ii)
x2013`1

“
`

x2 ´ 1
˘ `

x2011 ` x2009 ` x2007 ` ¨ ¨ ¨ ` x
˘

` px` 1q ,

so the remainder “ x` 1.

Note: If we treat x2 “as if it were equal to 1”, then

x2013 ` 1 “
`

x2
˘1006

¨ x` 1

behaves as if it were equal to 1 ¨ x` 1.

(iii) Apply the Euclidean algorithm to m and n in order to write m “ qn` r, where
0 ď r ă n:

xm “ xqn`r “ pxnqq ¨ xr.
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Then

xm ` 1 “ xqn`r ` 1

“ pxn ´ 1q
´

xnpq´1q`r
` xnpq´2q`r

` xnpq´3q`r
` ¨ ¨ ¨ ` xr

¯

` xr ` 1.

So the remainder is xr ` 1.

Note: If we treat xn ´ 1 as if were 0 – that is, if we treat xn as if it were equal
to 1 – then

xm ` 1 “ xqn`r ` 1 “ pxnqq ¨ xr ` 1

which behaves like 1q ¨ xr ` 1.

127. Suppose x2013 ` 1 “
`

x2 ` x` 1
˘

qpxq ` rpxq, where degprpxqq ă 2. Then

`

x2013 ` 1
˘

px´ 1q “ x2014 ´ x2013 ` x´ 1

“
`

x3 ´ 1
˘

qpxq ` px´ 1qrpxq.

Now

x2014 ´ x2013 ` x´ 1 “
`

x3 ´ 1
˘ `

x2011 ´ x2010 ` x2008 ´ x2007 ` x2004 ´ x2003 ` ¨ ¨ ¨ ` x´ 1
˘

` 2x´ 2

so the remainder rpxq “ 2.

Note: If x satisfies x2 ` x` 1 “ 0, then x3 ´ 1 “ 0 and x ‰ 1.
6 x2013 ` 1 “

`

x3
˘671

` 1 behaves just like 1671
` 1 “ 2, so rpxq “ 2.

128.

(a)

pa` biq´1
“

a

a2 ` b2
´

„

b

a2 ` b2



i.

(b)
ppxq “ x2 ´ 2ax`

`

a2 ` b2
˘

.

(Suppose that the quadratic equation

ppxq “ x2 ` cx` d “ 0,

with real coefficients c, d, has x “ a ` ib as a root. Then take the complex
conjugate of the equation ppxq “ 0 to see that x “ a´ ib is also a rooti of

ppxq “ x2 ` cx` d “ 0.

Therefore

ppxq “ x2 ` cx` d

“ px´ pa` ibqqpx´ pa´ ibqq,
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so c “ ´2a, and d “ a2 ` b2.)

129. Let the two unknown numbers be α and β. Then 10 “ α` β, and 40 “ αβ,
so α and β are roots of the quadratic equation x2 ´ 10x` 40 “ 0. Hence

α, β “
10˘

?
100´ 160

2
“ 5˘

?
´15.

130.

(a) Applying a simple rearrangement:

wz “ rpcos θ ` i sin θq ¨ spcosφ` i sinφq

“ rsrpcos θ ¨ cosφ´ sin θ sinφq ` ipcos θ ¨ sinφ` sinθ ¨ cosφqs

“ rsrcospθ ` φq ` i sinpθ ` φqs

(by the usual addition formula: Problem 35)

(b) By part (a),
pcos θ ` i sin θq2 “ cosp2θq ` i sinp2θq.

Hence

pcos θ ` i sin θq3 “ pcos θ ` i sin θq2pcos θ ` i sin θq

“ rcosp2θq ` i sinp2θqs ¨ pcos θ ` i sin θq

“ cosp3θq ` i sinp3θq.

Etc.

Note: This should really be presented as a “proof by mathematical induction”,
where (having established the initial cases) we “suppose the result holds for
powers n “ 1, 2, 3, . . . , k”, and then conclude that

pcos θ ` i sin θqk`1
“ pcos θ ` i sin θqkpcos θ ` i sin θq

“ rcospkθq ` i sinpkθqspcos θ ` i sin θq

“ cosppk ` 1qθq ` i sinppk ` 1qθq.

(c) zn “ rnpcospnθq ` i sinpnθqq. Hence if zn “ 1, then |zn| “ rn “ 1, so r “ 1
(since r ě 0).

131.

(a) We factorise: x3 ´ 1 “ px´ 1q
`

x2 ` x` 1
˘

, so the roots are x “ 1; and

x “
´1˘

?
1´ 4

2
“
´1˘

?
´3

2
“ ´

1

2
˘

?
3

2
i
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that is, the other two roots are

x “ cos

ˆ

2π

3

˙

` i sin

ˆ

2π

3

˙

and

x “ cos

ˆ

´
2π

3

˙

` i sin

ˆ

´
2π

3

˙

.

(b) We factorise:

x4 ´ 1 “
`

x2 ´ 1
˘ `

x2 ` 1
˘

“ px´ 1qpx` 1q
`

x2 ` 1
˘

,

so the roots are x “ 1, x “ ´1, x “ i, x “ ´i.

(c) We factorise:

x6 ´ 1 “

”

`

x2
˘3
´ 1

ı

“
`

x2 ´ 1
˘ `

x4 ` x2 ` 1
˘

“ px´ 1qpx` 1q
”

`

x2
˘2
` x2 ` 1

ı

,

so the roots are

– x “ 1, x “ ´1, and

– four further values of x satisfying x2 “ ´ 1
2
˘
?
3
2
i : that is,

x “ cos
´π

3

¯

` i sin
´π

3

¯

“
1

2
`

?
3

2
i

and

x “ cos

ˆ

2π

3

˙

` i sin

ˆ

2π

3

˙

“ ´
1

2
`

?
3

2
i

and

x “ cos
´

´π

3

¯

` i sin
´

´π

3

¯

“
1

2
´

?
3

2
i

and

x “ cos

ˆ

´2π

3

˙

` i sin

ˆ

´2π

3

˙

“ ´
1

2
´

?
3

2
i.

(d) We factorise:

x8 ´ 1 “
`

x4 ´ 1
˘ `

x4 ` 1
˘

“
`

x2 ´ 1
˘ `

x2 ` 1
˘

´

x2 `
?

2 ¨ x` 1
¯´

x2 ´
?

2 ¨ x` 1
¯

so the roots are

– x “ 1, x “ ´1;

– x “ i, x “ ´i, and

– the roots of x2 `
?

2 ¨ x` 1 “ 0 and x2 ´
?

2 ¨ x` 1 “ 0, which happen to be

x “ cos
´π

4

¯

` i sin
´π

4

¯

“

?
2

2
`

?
2

2
i
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and

x “ cos
´

´
π

4

¯

` i sin
´

´
π

4

¯

“

?
2

2
´

?
2

2
i

and

x “ cos

ˆ

3π

4

˙

` i sin

ˆ

3π

4

˙

“ ´

?
2

2
`

?
2

2
i

and

x “ cos

ˆ

´
3π

4

˙

` i sin

ˆ

´
3π

4

˙

“ ´

?
2

2
´

?
2

2
.

132. [In Problem 114 you were left to work out the required factorisation with
your bare hands – and a bit of inspired guesswork. The suggested approach here
is more systematic.]

The roots of x4 ` 1 “ 0 are complex numbers whose fourth power is equal to ´1:
that is,

x “ cos
´π

4

¯

` i sin
´π

4

¯

“

?
2

2
`

?
2

2
i

and

x “ cos
´

´
π

4

¯

` i sin
´

´
π

4

¯

“

?
2

2
´

?
2

2
i

and

x “ cos

ˆ

3π

4

˙

` i sin

ˆ

3π

4

˙

“ ´

?
2

2
`

?
2

2
i

and

x “ cos

ˆ

´
3π

4

˙

q ` i sin

ˆ

´
3π

4

˙

“ ´

?
2

2
´

?
2

2
i.

The first two are complex conjugates and give rise to two linear factors whose
product is x2 `

?
2 ¨ x` 1; the other two are complex conjugates and give rise to

two linear factors whose product is x2 ´
?

2 ¨ x` 1. Hence

x4 ` 1 “
´

x2 `
?

2 ¨ x` 1
¯´

x2 ´
?

2 ¨ x` 1
¯

.

133.

(a) The roots of x5 ´ 1 “ 0 are precisely the five complex numbers of the form

cos

ˆ

2kπ

5

˙

` i sin

ˆ

2kπ

5

˙

, for k “ 0, 1, 2, 3, 4:
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that is,

x “ 1

x “ cos

ˆ

2π

5

˙

` i sin

ˆ

2π

5

˙

x “ cos

ˆ

4π

5

˙

` i sin

ˆ

4π

5

˙

x “ cos

ˆ

6π

5

˙

` i sin

ˆ

6π

5

˙

x “ cos

ˆ

8π

5

˙

` i sin

ˆ

8π

5

˙

.

From Problem 3(c) we know that

cos

ˆ

2π

5

˙

“

?
5´ 1

4
“ cos

ˆ

8π

5

˙

sin

ˆ

2π

5

˙

“

a

10` 2
?

5

4
“ ´ sin

ˆ

8π

5

˙

cos

ˆ

4π

5

˙

“ ´ cos
´π

5

¯

“ ´

?
5` 1

4
“ cos

ˆ

6π

5

˙

sin

ˆ

4π

5

˙

“

a

10´ 2
?

5

4
“ ´ sin

ˆ

6π

5

˙

.

(b) The linear factor is clearly px´ 1q. Each quadratic factor arises as the product
of two conjugate linear factors. We saw in Problem 128(b) that two linear
factors corresponding to roots a ` bi and a ´ bi produce the quadratic factor
x2 ´ 2ax`

`

a2 ` b2
˘

. Hence the two quadratic factors are:

x2 ´

?
5´ 1

2
¨ x` 1, and x2 `

?
5` 1

2
¨ x` 1

(whose product is equal to x4 ` x3 ` x2 ` x` 1).

134.

(a) Put a “ 1, y “ x` 1: then x3 ` 3x2 ´ 4 “ 0 becomes y3 ´ 3y “ 2.

(b) Divide through by a (which we may assume is non zero, since otherwise it would
not be a cubic equation), to obtain a cubic equation

x3 ` px2 ` qx` r “ 0.

If we now put y “ x ` p
3
, then y3 incorporates both the x3 and the x2 terms,

and the equation reduces to:

y3 `

„

q ´ 3
´p

3

¯2


y `

„

r ` 2
´p

3

¯3

´ q
´p

3

¯



“ 0.
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135. Given the equation x3 ` 3x2 ´ 4 “ 0. Let y “ x` 1.

(i) Then y3 “ x3 ` 3x2 ` 3x` 1, so 0 “ x3 ` 3x2 ´ 4 “ y3 ´ 3y ´ 2.

(ii) Set y “ u` v and use the fact that

pu` vq3 “ u3
` 3uvpu` vq ` v3

is an identity, and so holds for all u and v.

(iii) Solve “3uv “ 3”, “u3
` v3 “ 2”. Substitute v “ 1

u
from the first equation

into the second to get the quadratic equation in
`

u3
˘2
´ 2u3

` 1 “ 0: that is,
`

u3
´ 1

˘2
“ 0, so u3

“ 1.

(iv) Hence u “ 1 is certainly a solution. (We know there are also complex
cube roots of 1; these lead to the other two solutions of the original cubic, but
to “solve the equation” it is enough to find one solution.) Hence v “ 1, so
y “ u ` v “ 2, and x “ 1.

136. The Euclidean algorithm for ordinary integers arises by repeating the division
algorithm:

given integers m, n (‰ 0), there exists unique integers q, r such that
m “ qn` r where 0 ď r ă n.

Here q is the quotient (the integer part of the divisionm˜n), and r is the remainder.
If we then replace the initial pair pm,nq by the new pair pn, rq and repeat until we
obtain the remainder 0, then the last non-zero remainder is equal to HCF pm,nq
(see Problem 6). The same idea also works for polynomials with integer coefficients
(see Problem 126).

We start by clarifying what we mean by divisibility for Gaussian integers. Given
two Gaussian integers, m “ a` bi and n “ c` di, we say that n “ c` di divides
m “ a` bi (exactly) precisely

when there exists some other Gaussian integer q “ e ` fi such that
m “ qn: that is, a` bi “ pe` fiqpc` diq.

For example, 2` 3i divides ´4` 7i because p1` 2iqp2` 3iq “ ´4` 7i.

If m “ a ` bi and n “ c ` di are any old Gaussian integers, then it will not in
general be true that “n divides m”, but we can imitate the division algorithm.
The important idea here when carrying out particular calculations is to realize
that “divide by c` di” is the same as “multiply by c´di

c2`d2
”

• first carry out the division

m˜ n “
pa` biqpc´ diq

c2 ` d2
;

• then take the “nearest” Gaussian integer q “ e ` fi, and let the difference
m´ qn “ r be the remainder.
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As for ordinary integers, any Gaussian integer that is a “common factor of m and
n” is then automatically a common factor of n and of r “ m´ qn, and conversely.
That is, the common factors of m and n are precisely the same as the common
factors of n and r. So we can repeat the process replacing m, n by n, r. Provided
the “remainder” r is in some sense “smaller” than n, we can continue until we reach
a stage where the remainder r “ 0 – at which point, the last non-zero remainder
is equal to the HCF pm,nq (that is, the Gaussian integer which is the HCF of the
two initial Gaussian integers m, n).

The feature of the remainders that gets progressively smaller is their norm (see
Problem 25, and Problem 54). As so often, this becomes clearer when we look at
an example.

Let us try to find the HCF of the two Gaussian integers m “ 14´42i and n “ 4´7i.

• First do the division

m˜ n “
p14´ 42iqp4` 7iq

42 ` 72
“

350

65
´

70

65
i.

• What is meant by the nearest Gaussian integer may require an element of
judgment; but it is clear that the answer is fairly close to 5 ´ i “ q, where
qn “ 13´ 39i, with remainder r “ m´ qn “ 1´ 3i.

• Now repeat the process with n, r:

n˜ r “
p4´ 7iqp1` 3iq

12 ` 32
“

5

2
`

1

2
i.

• The nearest Gaussian integer is not well-defined, but the answer is fairly close
to 3 “ q1. So q1r “ 3´ 9i, with remainder r1 “ n´ q1r “ 1` 2i.

• Now repeat the step with the pair r “ 1´ 3i and r1 “ 1` 2i, to discover that

1´ 3i “ ´p1` iqp1` 2iq

with remainder 0. Hence

1` 2i “ HCF p14´ 42i, 4´ 7iq.

Note: One way to picture the process is to learn to “see” the Gaussian integers
geometrically. Every Gaussian integer (such as a` bi) can be written as an integer
combination of the two basic Gaussian integers “1” and “i” – namely

a` bi “ aˆ 1` bˆ i.

Since 1 and i are both of length 1 and perpendicular to each other, this represents
the set of all Gaussian integers as the dots in a “square dot lattice” generated by
translations in the x- and y- directions of the basic unit square spanned by 0, 1, i,
and 1` i.

Any other given Gaussian integer, such as n “ c` di, then generates a “stretched
and rotated” square lattice, which consists of all “Gaussian multiples” of c` di –
generated by the basic square which is spanned by

0, pc` diq ˆ 1, pc` diq ˆ i, and pc` diq ˆ p1` iq.
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Every Gaussian integer (or rather the point, or dot, which corresponds to it) lies
either on the boundary, or inside, one of these larger “stretched and rotated”
squares: if the diagonal of one of these larger squares has length 2k, then any
other Gaussian integer m “ a ` bi lies inside one of these larger squares, and so
lies within distance k (that is, half a diagonal) of some (Gaussian) multiple qn of
n “ c` di. And the difference m´ qn is precisely the required remainder r.

Extra: We interpret 3
?

8 “ 8
1
3 “ 2. Prove that

?
´1
?
´1 « 23

1

7

(where « denotes “approximately equal to”).



V. Geometry

Those who fear to experiment with their hands
will never know anything.

George Sarton (1884–1956)

Mathematical truth is not determined arbitrarily
by the rules of some ‘man-made’ formal system,

but has an absolute nature and lies
beyond any such system of specifiable rules.

Roger Penrose (1930– )

Geometry is in many ways the most natural branch of elementary
mathematics through which to convey “the essence” of the discipline.

• The underlying subject matter is rooted in seeing, moving, doing, drawing,
making, etc., and so is accessible to everyone.

• At secondary level this practical experience leads fairly naturally to a
semi-formal treatment of “geometry as a mental universe”

– a universe that is bursting with surprising facts, whose statements can
be easily understood; and

– which has a clear logical structure, in terms of which the proofs of these
facts are accessible, if sometimes tantalisingly elusive.

This combination of elusive problems to be solved and the steady
accumulation of proven results has provided generations of students with
their first glimpse of serious mathematics. All readers can imagine the kind
of experiences which lie behind the first bullet point above: many of the
problems we have already met (such as Problems 4, 19, 20, 26, 27, 28, 29,
30, 31, 37, 38, 39) do not depend on the “semi-formal treatment” referred
to in the second bullet point, so can be tackled by anyone who is interested
– provided they accept the importance of learning to construct their own
diagrams (in the spirit of the George Sarton quotation).

The hand is the cutting edge of the mind.
Jacob Bronowski (1908–1974)
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But there is a catch – which explains why the present chapter appears
so late in the collection. For many problems to successfully convey “the
essence of mathematics” there has to be some shared understanding of
what constitutes a solution. And in geometry, many solutions require the
construction of a proof. Yet many readers will never have experienced a
coherent “semi-formal treatment” of elementary geometry in the spirit of
the second bullet point. Hence in Problems 3(c), 18, 21, 32, 34, 36 we
committed the cardinal sin of leading the reader by the nose – breaking each
problem into steps in order to impose a logical structure. This may have
been excusable in Chapter 1; but in a chapter explicitly devoted to geometry,
the underlying challenge has to be faced head on: that is, the raw experience
of the hand has to be refined to provide a deductive structure for the mind.

As in Chapter 1, some of the problems listed from Section 5.3 onwards can be
tackled without worrying too much about the logical structure of elementary
geometry. But in many instances, the “essence” that is captured by a
problem requires that the problem be seen within an agreed logical hierarchy
– a sequencing of properties, results, and methods, which establishes what is
a consequence of what – and hence, what can be used as part of a solution.
In particular, we need to construct proofs that avoid circular reasoning.

If B is a consequence of A, or if B is equivalent to A, then a ‘proof’
of A which makes use of B is at best dubious, and may well be a
delusion.

The need to avoid such circular reasoning arose already in Problem 21 (the
converse of Pythagoras’ Theorem), where we felt the need to state explicitly
that it would be inappropriate to use the Cosine Rule: (see Problem 192
below).

Such concerns may explain why this chapter on geometry is the last of the
chapters relating to elementary ‘school mathematics’, and why we begin the
chapter with

• an apparent digression (Section 5.1), and

• an outline of elementary Euclidean geometry (Section 5.2).

Those with a strong background in geometry may choose to skip these
sections on a first reading, and move straight on to the problems which
start in Section 5.3. But they may then fail to see how the cumulative
architecture of Section 5.2 conveys a rather different aspect of the “essence
of mathematics”, deriving not just from the individual problems, but from
the way a carefully crafted, systematic arrangement of simple “bricks” can
create a much more significant mathematical structure.
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5.1. Comparing geometry and arithmetic

The opening quotations remind us that the mental universe of formal
mathematics draws much of its initial inspiration from human perception
and activity – activity which starts with infants observing, moving around,
and operating with objects in time and in space. Many of our earliest
pre-mathematical experiences are quintessentially proto-geometrical. We
make sense of visual inputs; we learn to recognise faces and objects; we
crawl around; we learn to look ‘behind’ and ‘underneath’ obstructions in
search of hidden toys; we sort and we build; we draw and we make; etc..
However, for this experience to develop into mathematics, we then need to

• identify certain semi-formal “objects” (points, lines, angles, triangles),

• pinpoint the key relations between them (bisectors, congruence, parallels,
similarity), and then

• develop the associated language that allows us to encapsulate insights from
prior experience into a coherent framework for calculation and deduction.

Too little attention has been given to achieving a consensus as to how
this transition (from informal experience, to formal reasoning) can best be
established for beginners in elementary geometry. In contrast, number and
arithmetic move much more naturally

• from our early experience of time and quantity

• to the notation, the operations, the calculational procedures, and the rules
of formal arithmetic and algebra.

Counting is rooted in the idea of a repeated unit – a notion that may stem
from the ever-present, regular heartbeat that envelops every embryo (where
the beat is presumably felt long before it is heard). Later we encounter
repeated units with longer time scales (such as the cycles of day and night,
and the routines of feeding and sleeping). The first months and years
of life are peppered with instances of numerosity, of continuous quantity,
of systematic ordering, of sequences, of combinations and partitions, of
grouping and replicating, and of relations between quantities and operations
– experiences which provide the raw material for the mathematics of number,
of place value, of arithmetic, and later of ‘internal structure’ (or algebra).

The need for political communities to construct a formal school curriculum
linking early infant experience and elementary formal mathematics is a
recent development. Nevertheless, in the domain of number, quantity, and
arithmetic (and later algebra), there is a surprising level of agreement about
the steps that need to be incorporated – even though the details may differ
in different educational systems and in different classrooms. For example:
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• One must somehow establish the idea of a unit, which can be replicated
to produce larger numbers, or multiples.

• One must then group units relative to a chosen base (e.g. 10), iterate this
grouping procedure (by taking “ten tens”, and then “ten hundreds”), and
use position to create place value notation.

• One must introduce “0” – both as a number in its own right, and as a
placeholder for expressing numbers using place value.

• One can then use combinations and differences, multiples and sharing (and
partitions), to develop arithmetic.

• At some stage one introduces subunits (i.e. unit fractions) and
submultiples (i.e. multiples of these subunits) to produce general fractions;
one can then use equivalence and common submultiples to extend
arithmetic to fractions.

• If we restrict to decimal fractions, then our ideas of place value for integers
can be extended to the right of the decimal point to produce decimals.

• At every stage we need to

– relate these ideas to quantities,

– require pupils to interpret and solve word problems, and

– cultivate both mental arithmetic and standard written algorithms.

• Towards the end of primary school, attention begins to move beyond
bare hands computation, to consciously exploit internal structure in
preparation for algebra.

Our early geometrical experience is just as natural as that relating to
number; but it is more subtle. And there is as yet no comparable consensus
about the path that needs to be followed if our primitive geometrical
experience is to be formalised in a useable way.

The 1960s saw a drive to modernise school mathematics, and at the same
time to make it accessible to all. Elementary geometry certainly needed
a re-think. But the reformers in most countries simply dismissed the
traditional mix (e.g. in England, where one found a blend of technical
drawing, Euclidean, and coordinate geometry in different proportions for
different groups of students) in favour of more modern-sounding alternatives.
Some countries favoured a more abstract, deductive framework; some tried
to exploit motion and transformations; some used matrices and groups; some
used vectors and linear algebra; some even toyed with topology. More
recently we have heard similarly ambitious claims on behalf of dynamic
geometry software. And although each approach has its attractions,
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none of the alternatives has succeeded in helping more students
to visualise, to reason, and to calculate effectively in geometrical
settings.

At a much more advanced level, geometry combines

• with abstract algebra (where the approach proposed by Felix Klein
(1849–1925) shows how to identify each geometry with a group of
transformations), and

• with analysis and linear algebra (where, following Gauss (1777–1855),
Riemann (1826–1866) and Grassmann (1809–1877), calculus, vector
spaces, and later topology can be used to analyse the geometry of surfaces
and other spaces).

However, these subtle formalisms are totally irrelevant for beginners, who
need an approach

• based on concepts which are relatively familiar (points, lines, triangles
etc.), and

• whose basic properties can be formulated relatively simply.

The subtlety and flexibility of dynamic geometry software may be hugely
impressive; but if students are to harness this power, they need prior
mastery of some simple, semi-formal framework, together with the associated
language and modes of reasoning. Despite the lack of an accepted consensus,
the experience of the last 50 years would seem to suggest that the
most relevant framework for beginners at secondary level involves some
combination of:

• static, relatively traditional Euclidean geometry, and

• Cartesian, or coordinate (analytic) geometry.

5.2. Euclidean geometry: a brief summary

Philosophy is written in this grand book – I mean the
universe – which stands continually open to our gaze,

but it cannot be understood
unless one first learns to comprehend the language

and to interpret the characters in which it is written.
It is written in the language of mathematics,

and its characters are triangles, circles,
and other geometrical figures, without which

it is humanly impossible to understand a single word of it;
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without these, one is wandering about in a dark labyrinth.
Galileo Galilei (1564–1642)

This section provides a detailed, but compressed, outline of an initial
formalisation of school geometry – of a kind that one would like good students
and all teachers to appreciate. It is unashamedly a semi -formal approach
for beginners, not a strictly formal treatment (such as that provided by
David Hilbert (1862–1943) in his 1899 book Foundations of Geometry, or
in the more detailed exposition by Edwin Moise (1918–1998) Elementary
Geometry from an Advanced Standpoint, published in 1963). In particular:

• we work with relatively informal notions of points, lines, and angles in the
plane;

• we focus attention on certain simple issues which really matter at school
level (such as how points, lines, line segments, and angles are referred to;
the notion of a triangle as an ordered triple of vertices; the fact that the
vertices of a quadrilateral must be labelled cyclically; etc.);

• we limit the formal deductive structure to just three central criteria,
namely the criteria for congruence, for parallels, and for similarity, and
show how they allow one to develop results and methods in a logical
sequence.

We begin with the intuitive idea of points and lines in the plane. Two points
A, B determine

• the line segment AB (with endpoints A and B), and

• the line AB (which extends the line segment AB in both directions –
beyond A, and beyond B).

Three points A, B, C determine an angle =ABC (between the two line
segments BA and BC).

We can then begin to build more complicated figures, such as

• a triangle ABC (with three vertices A, B, C; three sides AB, BC, CA;
and three angles =ABC at the vertex B, =BCA at C, and =CAB at A),

• a quadrilateral ABCD (with four vertices A, B, C, D; and four sides AB,
BC, CD, DA which meet only at their endpoints).

And so on. Two given points A, B also allow us to construct the circle with
centre A, and passing through B (that is, with radius AB).

This very limited beginning already opens up the world of ruler and
compasses constructions. In particular, given a line segment AB, one can
draw:
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• the circle with centre A, and passing through B, and

• the circle with centre B, and passing through A.

If the two circles meet at C,

• then AB “ AC (radii of the first circle), and BA “ BC (radii of the
second circle).

Hence we have constructed the equilateral triangle 4ABC on the given
segment AB. This construction is the very first proposition in Book 1 of
the Elements of Euclid (flourished c. 300 BC). Euclid’s second proposition
is presented next as a problem.

Problem 137 Given three points A, B, C, show how to construct – without
measuring – a point D such that the segments AB and CD are equal (in
length). 4

Problem 137 looks like a simple starter (where the only available
construction is to produce the third vertex of an equilateral triangle on a
given line segment). However, to produce a valid solution requires a clear
head and a degree of ingenuity.

Given two points A, B, the process of constructing an equilateral triangle
4ABC illustrates how we are allowed to construct new points from old.

• Whenever we construct two lines or circles that cross, the points where
they cross (such as the point C in the above construction of the equilateral
triangle 4ABC) become available for further constructions. So, if points
A and B are given, then once C has been constructed, we may proceed to
draw the lines AC and BC.

However, the fact that we can construct a line segment AB does not allow
us to ‘measure’ the segment with a ruler, and then to use the resulting
measurement to ‘copy’ the segment AB to the point C in order to construct
the required point D such that AB “ CD. The “ruler” in ruler and
compasses constructions is used only to draw the line through two known
points – not to measure. (Measuring is an approximate physical action,
rather than an exact “mental construction”, and so is not really part of
mathematics.) Hence in Problem 137 we have to find another way to
produce a copy CD of the segment AB starting at the point C. Similarly, we
can construct the circle with centre A and passing through B, but this does
not allow us to use the pair of compasses to transfer distances physically
(e.g. by picking up the compasses from AB and placing the compass point
at C, like using the old geometrical drawing instrument that was called a
pair of dividers). In seeking the construction required in Problem 137, we
are restricted to “exact mental constructions” which may be described in
terms of:
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• drawing (or constructing) the line joining any two known points,

• constructing the circle with centre at a known point and passing through
a known point, and

• obtaining a new point D as the intersection of two constructed lines or
circles (or of a line and a circle).

If on the line AB, the point X lies between A and B, then we obtain a
straight angle =AXB at X (or rather two straight angles at X – one on
each side of the line AB). If we assume that all straight angles are equal,
then it follows easily that “vertically opposite angles are always equal”.

Problem 138 Two lines AB and CD cross at X, where X lies between A
and B and between C and D. Prove that =AXC “ =BXD. 4

Define a right angle to be ‘half a straight angle’. Then we say that two lines
which cross at a point X are perpendicular if an angle at X is a right angle
(or equivalently, if all four angles at X are equal). The next step requires
us to notice two things – partly motivated by experience when coordinating
hand, eye and brain to construct, and to think about, physical structures.

• First we need to recognise that triangles hold the key to the analysis of
more complicated shapes.

• Then we need to realise that triangles in different positions can still be
“equal”, or congruent – which then focuses attention on the minimal
conditions under which two triangles can be guaranteed to be congruent.

The first of these two bullet points has an important consequence – namely
that solving any problem in 2- or in 3-dimensions generally reduces to
working with triangles. In particular, solving problems in 3-dimensions
reduces to working in some 2-dimensional cross-section of the given figure
(since three points not only determine a triangle, but also determine the
plane in which that triangle lies). It follows that 2-dimensional geometry
holds the key to solving problems in 3-dimensions, and that working with
triangles is central in all geometry.

The second bullet point forces us to think carefully about:

• what we mean by a triangle (and in particular, to understand why 4ABC
and 4BCA are in some sense different triangles, even though they use
the same three vertices and sides), and

• what it means for two triangles to be “the same”.
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A triangle 4ABC incorporates six pieces of data, or information: the three
sides AB, BC, CA and the three angles =ABC, =BCA, =CAB. We say
that two (ordered) triangles 4ABC and 4A1B1C 1 are congruent (which we
write as

4ABC ” 4A1B1C 1,

where the order in which the vertices are listed matters) if their sides and
angles “match up” in pairs, so that

AB “ A1B1, BC “ B1C 1, CA “ C 1A1,
=ABC “ =A1B1C 1, =BCA “ =B1C 1A1, =CAB “ =C 1A1B1.

As a result of drawing and experimenting with our hands, our minds may
realise that certain subsets of these six conditions suffice to imply the others.
In particular:

SAS-congruence criterion: if

AB “ A1B1, =ABC “ =A1B1C 1, BC “ B1C 1,

then
4ABC ” 4A1B1C 1

(where the name “SAS” indicates that the three listed match-ups
occur in the specified order S (side), A (angle), S (side) as one goes
round each triangle).

SSS-congruence criterion: if

AB “ A1B1, BC “ B1C 1, CA “ C 1A1,

then
4ABC ” 4A1B1C 1.

ASA-congruence criterion: if

=ABC “ =A1B1C 1, BC “ B1C 1, =BCA “ =B1C 1A1,

then
4ABC ” 4A1B1C 1.

If in a given triangle 4ABC we have AB “ AC, then we say that 4ABC is
isosceles with apex A, and base BC (iso = same, or equal; sceles = legs).
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Problem 139 Let 4ABC be an isosceles triangle with apex A. Let M be
the midpoint of the base BC. Prove that 4AMB ” 4AMC and conclude
that AM is perpendicular to the base BC. 4

Problem 140 Construct two non-congruent triangles, 4ABC and
4A1B1C 1, where =BCA “ =B1C 1A1 “ 30˝, |CA| “ |C 1A1| “

?
3,

|AB| “ |A1B1| “ 1.

Conclude that there is in general no “ASS-congruence criterion”. 4

The congruence criteria allow one to prove basic results such as:

Claim In any isosceles triangle 4ABC with apex A (i.e. with
AB “ AC), the two base angles =B and =C are equal.

Proof 1 Let M be the midpoint of BC.
Then 4AMB ” 4AMC (by the SSS-congruence criterion, since
AM “ AM ,
MB “MC (by construction of M as the midpoint)
BA “ CA (given)).
6 =B “ =ABM “ =ACM “ =C. QED

Proof 24BAC ” 4CAB (by the SAS-congruence criterion, since
BA “ CA (given),
=BAC “ =CAB (same angle),
AC “ AB (given)).
6 =B “ =ABC “ =ACB “ =C. QED

We also have the converse result:

Claim In any triangle 4ABC, if the base angles =B and =C
are equal, then the triangle is isosceles with apex A (i.e. AB “ AC).

Proof 4ABC ” 4ACB (by the ASA-congruence criterion, since
=ABC “ =ACB (given),
BC “ CB, and
=BCA “ =CBA (given)).
6 AB “ AC. QED

Problem 141

(i) A circle with centre O passes through the point A. The line AO meets the
circle again at B. If C is a third point on the circle, prove that =ACB is
equal to =CAB `=CBA.
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(ii) Conclude that, if the angles in4ABC add to a straight angle, then =ACB
is a right angle. 4

Once we introduce the parallel criterion, and hence can prove that the three
angles in any triangle add to a straight angle, Problem 141 will guarantee
that “the angle subtended on the circumference by a diameter is always a
right angle”.

Problem 142 Show how to implement the basic ruler and compasses
constructions:

(i) to construct the midpoint M of a given line segment AB;

(ii) to bisect a given angle =ABC;

(iii) to drop a perpendicular from P to a line AB (that is, to locate X on the
line AB, so that the two angles that PX makes with the line AB on either
side of PX are equal).

Prove that your constructions do what you claim. 4

Problem 143 Given two points A and B.

(a) Prove that each point X on the perpendicular bisector of AB is equidistant
from A and from B (that is, that XA “ XB).

(b) Prove that, if X is equidistant from A and from B, then X lies on the
perpendicular bisector of AB. 4

Problem 143 shows that, given a line segment AB, the perpendicular
bisector of AB is the locus of all points X which are equidistant from A
and from B. This observation is what lay behind the construction of the
circumcentre of a triangle (back in Chapter 1, Problem 32(a)):

Given any 4ABC.
Let O be the point where the perpendicular bisectors of AB and
BC meet.
Then OA “ OB
and OB “ OC.
6 OA “ OB “ OC.
Hence O is the centre of a circle passing through all three vertices
A, B, C.
Moreover O also lies on the perpendicular bisector of CA.
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This circle is called the circumcircle of 4ABC, and O is called the
circumcentre of 4ABC. As indicated back in Problem 32, the radius of the
circumcircle of 4ABC (called the circumradius of the triangle) is generally
denoted by R. Later we will meet other circles and “centres” associated with
a given triangle 4ABC.

Before moving on it is worth extending Problem 143 to three dimensions.

Problem 144 Given any two points N , S in 3D space, prove that the locus
of all points X which are equidistant from N and from S form the plane
perpendicular to the line NS and passing through the midpoint M of NS.

4

The next two fundamental results are often neglected.

Problem 145 Given any 4ABC, if we extend the side BC beyond C to a
point X, then the “exterior angle” =ACX at C is greater than each of the
“two interior opposite angles” =A and =B. 4

Problem 146

(a) If in4ABC we have AB ą AC, then =ACB ą =ABC. (“In any triangle,
the larger angle lies opposite the longer side.”)

(b) If in4ABC we have =ACB ą =ABC, then AB ą AC. (“In any triangle,
the longer side lies opposite the larger angle.”)

(c) (The triangle inequality) Prove that in any triangle 4ABC,

AB `BC ą AC. 4

The results in Problems 145 and 146 have surprisingly many consequences.
For example, they allow one to prove the converse of the result in Problem
141.

Problem 147 Suppose that in 4ABC, =C “ =A`=B. Prove that C lies
on the circle with diameter AB.

(In particular, if the angles of 4ABC add to a straight angle, and =ACB
is a right angle, then C lies on the circle with diameter AB.) 4

We come next to a result whose justification is often fudged. At first sight
it is unclear how to begin: there seems to be so little information to work
with – just two points and a line through one of the points.
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Problem 148 A circle with centre O passes through the point P . Prove
that the tangent to the circle at P is perpendicular to the radius OP . 4

Problem 148 is an example of a result which implies its own converse –
though in a backhanded way. Suppose a circle with centre O passes through
the point P . If OP is perpendicular to a line m passing through P , then
m must be tangent to the circle (because we know that the tangent at P
is perpendicular to OP , so the angle between m and the tangent is “zero”,
which forces m to be equal to the tangent). This converse will be needed
later, when we meet the incircle.

Problem 149 Let P be a point and m a line not passing through P .
Prove that, among all possible line segments PX with X on the line m,
a perpendicular from P to the line m is the shortest. 4

The result in Problem 149 allows us to define the “distance” from P to
the line m to be the length of any perpendicular from P to m. (As far as
we know at this stage of the development, there could be more than one
perpendicular from P to m.)

Note that all the results mentioned so far have avoided using the Euclidean
“parallel criterion” (or – equivalently – the fact that the three angles in
any triangle add to a straight angle). So results proved up to this point
should still be “true” in any geometry where we have points, lines, triangles,
and circles satisfying the congruence criteria – whether or not the geometry
satisfies the Euclidean “parallel criterion”.

The idea that there is only one “shortest” distance from a point to a line
may seem “obvious”; but it is patently false on the sphere, where every line
(i.e. ‘great circle’) from the North pole P to the equator is perpendicular
to the equator (and all these lines have the same “length”). The proof that
there is just one such perpendicular from P to m depends on the parallel
criterion (see below) – a criterion which fails to hold for geometry on the
sphere.

Euclid’s Elements started with a few basic axioms that formalised the idea
of ruler and compasses constructions. He then added a simple axiom that
allowed one to compare angles in different locations. He made the forgivable
mistake of omitting an axiom for congruence of triangles – imagining that it
can be proved. (It can’t.) However he then stated, and carefully developed
the consequences of, a much more subtle axiom about parallel lines (two lines
m, n in the plane are said to be parallel if they never meet, no matter how far
they are extended). For reasons that remain unclear, instead of appreciating
that Euclid’s “parallel postulate” constituted a profound insight into the
foundations of geometry, mathematicians in later ages saw the complexity
of Euclid’s postulate as some kind of flaw, and so tried to show that it could
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be derived from the other, simpler postulates. The attempt to “correct” this
perceived flaw became a kind of Holy Grail.

The story is instructive, but too complicated to summarise accurately
here. The situation was eventually clarified by two nineteenth century
mathematicians (more-or-less at the same time, but working independently).
In the revolutionary, romantic spirit of the nineteenth century, János Bolyai
(Hungarian: 1802–1860) and Nikolai Lobachevski (Russian: 1792–1856) each
allowed himself to consider what would happen if one adopted a different
assumption about how “parallel lines” behave. Both discovered that one can
then derive an apparently coherent theory of a completely novel kind, with
its own beautiful results: that is, a geometry which seemed to be internally
“consistent” – but different from Euclidean geometry. Lobachevski published
brief notes of his work in 1829–30 (in Kazan); Bolyai knew nothing of this and
published incomplete notes of his researches in 1832. Lobachevski published
a more detailed booklet in 1840.

Neither mathematician got the recognition he might have anticipated, and
it was only much later (largely after their deaths) that others realised
how to show that the fantasy world they had each dreamt up was just
as “internally consistent” as traditional Euclidean geometry. The story is
further complicated by the fact that the dominant mathematician of the time
– namely Gauss (1777–1855) – claimed to have proved something similar
(and he may well have done so, but exactly what he knew has to be inferred
from cryptic remarks in occasional letters, since he published nothing on
the subject). If there is a moral to the story, it could be that success in
mathematics may not be recognised, or may only be recognised after one’s
death: so those who spend their lives exploring the mathematical universe
had better appreciate the delights of the mathematical journey, rather than
being primarily motivated by a desire for immediate recognition and acclaim!

Two lines m, n in the plane are said to be parallel if they never meet – no
matter how far they are extended. We sometimes write this as “m ‖ n”.

Given two lines m, n in the plane, a third line p which crosses both m and
n is called a transversal of m and n.

Parallel criterion: Given two lines m and n, if some transversal p
is such that the two “internal” angles on one side of the line p (that
is the two angles that p makes with m and with n, and which lie
between the two lines m and n) add to less than a straight angle,
then the lines m and n must meet on that side of the line p.

If the internal angles on one side of p add to more than a straight angle,
then internal angles on the other side of p add to less than a straight angle,
so the lines m and n must meet on the other side of p. It follows

• that two lines m and n are parallel precisely when the two internal angles
on one side of a transversal add to exactly a straight angle.
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Parallel lines can be thought of as “all having the same direction”; so it is
convenient to insist that “every line is parallel to itself” (even though it has
lots of points in common with itself). It then follows

• that, given three lines k, m, n, if k is parallel to m and m is parallel to n,
then k is parallel to n; and

• that given a line m and a point P , there is a unique line n through P
which is parallel to m.

All this then allows one

• to conclude that, if m and n are any two lines, and p is a transversal,
then m and n are parallel if and only if alternate angles are equal (or
equivalently, if and only if corresponding angles are equal); and

• to extend the basic ruler and compasses constructions to include the
construction:

“given a line AB and a point P ,
construct the line through P which is parallel to AB”

(namely, by first constructing the line PX through P , perpendicular to
AB, and then the line through P , perpendicular to PX).

One can then prove the standard result about the angles in any triangle.

Claim The angles in any triangle 4ABC add to a straight angle.

Proof Construct the line m through A that is parallel to BC.
Then AB and AC are transversals, which cross both the line m
and the line BC, and which make three angles at the point A on
m:

• one being just the angle =A in the triangle 4ABC,

• one being equal to =B (alternate angles relative to the
transversal AB) and

• one being equal to =C (alternate angles relative to the
transversal AC).

The three angles at A clearly add to a straight angle, so the three
angles =A, =B, =C also add to a straight angle. QED

Once we know that the angles in any triangle add to a straight angle, we
can prove all sorts of other useful facts. One is a simple reformulation of the
above Claim.
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Problem 150 Given any triangle 4ABC, extend BC beyond C to a point
X. Then the exterior angle

=XCA “ =A`=B.

(“In any triangle, each exterior angle is equal to the sum of the two interior
opposite angles.”) 4

Another important consequence is the result which underpins the sequence
of “circle theorems”.

Problem 151 Let O be the circumcentre of 4ABC. Prove that

=AOB “ 2 ¨=ACB. 4

Problem 151 implies that

“the angles subtended by any chord AB on a given arc of the circle
are all equal”,

and are equal to exactly one half of the angle subtended by AB at the
centre O of the circle. This leads naturally to the familiar property of cyclic
quadrilaterals.

Problem 152 Let ABCD be a quadrilateral inscribed in a circle (such a
quadrilateral is said to be cyclic, and the four vertices are said to be concyclic
– that is, they lie together on the same circle). Prove that opposite angles
(e.g. =B and =D) must add to a straight angle. (Two angles which add to
a straight angle are said to be supplementary.) 4

These results have lots of lovely consequences: we shall see one especially
striking example in Problem 164. Meantime we round up our summary of
the “circle theorems”.

Problem 153 Suppose that the line XAY is tangent to the circumcircle of
4ABC at the point A, and that X and C lie on opposite sides of the line
AB. Prove that =XAB “ =ACB. 4

Problem 154

(a) Suppose C, D lie on the same side of the line AB.

(i) If D lies inside the circumcircle of 4ABC, then =ADB ą =ACB.
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(ii) If D lies outside the circumcircle of 4ABC, then =ADB ă =ACB.

(b) Suppose C, D lie on the same side of the line AB, and that =ACB “

=ADB. Then D lies on the circumcircle of 4ABC.

(c) Suppose that ABCD is a quadrilateral, in which angles =B and =D are
supplementary. Then ABCD is a cyclic quadrilateral. 4

Another result which follows now that we know that the angles of a triangle
add to a straight angle is a useful additional congruence criterion – namely
the RHS-congruence criterion. This is a ‘limiting case’ of the failed
ASS-congruence criterion (see the example in Problem 140). In the failed
ASS criterion the given data correspond to two different triangles – one in
which the angle opposite the first specified side (the first “S” in “ASS”) is
acute, and one in which the angle opposite the first specified side is obtuse.
In the RHS-congruence criterion, the angle opposite the first specified side
is a right angle, and the two possible triangles are in fact congruent.

RHS-congruence criterion: If =ABC and =A1B1C 1 are both right angles,
and BC “ B1C 1, CA “ C 1A1, then

4ABC ” 4A1B1C 1.

Proof Suppose that AB “ A1B1. Then

AB “ A1B1,
=ABC “ =A1B1C 1,
BC “ B1C 1.

Hence we may apply the SAS-congruence criterion to conclude that
4ABC ” 4A1B1C 1.
If on the other hand AB ‰ A1B1, we may suppose that BA ą B1A1.
Now construct A2 on BA such that BA2 “ B1A1. Then

A2B “ A1B1,
=A2BC “ =A1B1C 1,
BC “ B1C 1,
6 4A2BC ” 4A1B1C 1 (by SAS-congruence).
Hence A2C “ A1C 1 “ AC, so 4CAA2 is isosceles.
6 =CA2A “ =CAA2.

However, =CA2A ą =CBA (since the exterior angle =CA2A in 4CBA2
must be greater than the interior opposite angle =CBA, by Problem 145).

But then the two base angles in the isosceles triangle 4CAA2 are each
greater than a right angle – so the angle sum of 4CAA2 is greater than a
straight angle, which is impossible. Hence this case cannot occur. QED
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RHS-congruence seems to be needed to prove the basic result (Problem 161
below) about the area of parallelograms, and this is then needed in the proof
of Pythagoras’ Theorem (Problem 18). In one sense RHS-congruence looks
like a special case of SSS-congruence (as soon as two pairs of sides in two right
angled triangles are equal, Pythagoras’ Theorem guarantees that the third
pair of sides are also equal). However this observation cannot be used to
justify RHS-congruence if RHS-congruence is needed to justify Pythagoras’
Theorem.

Problem 155 Given a circle with centre O, let Q be a point outside the
circle, and let QP , QP 1 be the two tangents from Q, touching the circle at
P and at P 1. Prove that QP “ QP 1, and that the line OQ bisects the angle
=PQP 1. 4

Problem 156 You are given two lines m and n crossing at the point B.

(a) If A lies on m and C lies on n, prove that each point X on the bisector of
angle =ABC is equidistant from m and from n.

(b) If X is equidistant from m and from n, prove that X must lie on one of
the bisectors of the two angles at B. 4

Problem 156 shows that, given two lines m and n that cross at B, the
bisectors of the two pairs of vertically opposite angles formed at B form the
locus of all points X which are equidistant from the two lines m and n. This
allows us to mimic the comments following Problem 143 and so to construct
the incentre of a triangle.

Given any 4ABC, let I be the point where the angle bisectors of
=ABC and =BCA meet.

Let the perpendiculars from I to the three sides AB, BC, CA meet
the sides at P , Q, R respectively. Then

IP “ IQ (since I lies on the bisector of =ABC) and
IQ “ IR (since I lies on the bisector or =BCA).

Hence the circle which has centre I and which passes through P
also passes through Q and R.
Moreover, I also lies on the bisector of =CAB; and since the radii
IP , IQ, IR are perpendicular to the sides of the triangle, the circle
is tangent to the three sides of the triangle (by the comments
following Problem 148).
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This circle is called the incircle of 4ABC, and I is called the incentre of
4ABC. The radius of the incircle of 4ABC is called the inradius, and is
generally denoted by r.

A quadrilateral ABCD in which AB ‖ DC and BC ‖ AD is called a
parallelogram. A parallelogram ABCD with a right angle is a rectangle.
A parallelogram ABCD with AB “ AD is called a rhombus. A rectangle
which is also a rhombus is called a square.

Problem 157 Let ABCD be a parallelogram.

(i) Prove that 4ABC ” 4CDA, so that each triangle has area exactly half
of area(ABCD).

(ii) Conclude that opposite sides of ABCD are equal in pairs and that opposite
angles are equal in pairs.

(iii) Let AC and BD meet at X. Prove that X is the midpoint of both AC
and BD. 4

Problem 158 Let ABCD be a parallelogram with centre X (where the two
main diagonals AC and BD meet), and let m be any straight line passing
through the centre. Prove that m divides the parallelogram into two parts
of equal area. 4

We defined a parallelogram to be “a quadrilateral ABCD in which
AB ‖ DC and BC ‖ AD”; however, in practice, we need to be able to
recognise a parallelogram even if it is not presented in this form. The next
result hints at the variety of other conditions which allow us to recognise a
given quadrilateral as being a parallelogram “in mild disguise”.

Problem 159

(a) Let ABCD be a quadrilateral in which AB ‖ DC, and AB “ DC. Prove
that BC ‖ AD, and hence that ABCD is a parallelogram.

(b) Let ABCD be a quadrilateral in which AB “ DC and BC “ AD. Prove
that AB ‖ DC, and hence that ABCD is a parallelogram.

(c) Let ABCD be a quadrilateral in which =A “ =C and =B “ =D.
Prove that AB ‖ DC and that BC ‖ AD, and hence that ABCD is a
parallelogram. 4

The next problem presents a single illustrative example of the kinds of things
which we know in our bones must be true, but where the reason, or proof,
may need a little thought.
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Problem 160 Let ABCD be a parallelogram. Let M be the midpoint of
AD and N be the midpoint of BC. Prove that MN ‖ AB, and that MN
passes through the centre of the parallelogram (where the two diagonals
meet). 4

Problem 161 Prove that any parallelogram ABCD has the same area as
the rectangle on the same base DC and “with the same height” (i.e. lying
between the same two parallel lines AB and DC). 4

The ideas and results we have summarised up to this point provide exactly
what is needed in the proof of Pythagoras’ Theorem outlined back in Chapter
1, Problem 18. They also allow us to identify two more “centres” of a given
triangle 4ABC.

Problem 162 Given any triangle 4ABC, draw the line through A which
is parallel to BC, the line through B which is parallel to AC, and the line
through C which is parallel to AB. Let the first two constructed lines meet
at C 1, the second and third lines meet at A1, and the first and third lines
meet at B1.

(a) Prove that A is the midpoint of B1C 1, that B is the midpoint of C 1A1, and
that C is the midpoint of A1B1.

(b) Conclude that the perpendicular from A to BC, the perpendicular from
B to CA, and the perpendicular from C to AB all meet in a single point
H. (H is called the orthocentre of 4ABC.) 4

Let the foot of the perpendicular from A to BC be P , the foot of the
perpendicular from B to CA be Q, and the foot of the perpendicular from C
to AB be R. Then4PQR is called the orthic triangle of4ABC. The “circle
theorems” (especially Problems 151 and 154(c)) lead us to discover that this
triangle has two quite unexpected properties. As a partial preparation for
one of the properties we digress slightly to introduce a classic problem.

Problem 163 My horse is tethered at H some distance away from my
village V . Both H and V are on the same side of a straight river. How
should I choose the shortest route to lead the horse from H to V , if I want
to water the horse at the river en route? 4
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Problem 164 Let 4ABC be an acute angled triangle.

(a) Prove that, among all possible triangles 4PQR inscribed in 4ABC, with
P on BC, Q on CA, R on AB, the orthic triangle is the one with the
shortest perimeter.

(b) Suppose that the sides of 4ABC act like mirrors. A ray of light is shone
along one side of the orthic triangle PQ, reflects off CA, and the reflected
beam then reflects in turn off AB. Where does the ray of light next hit
the side BC? (Alternatively, imagine the sides of the triangle as billiard
table cushions, and explain the path followed by a ball which is projected,
without spin, along PQ.) 4

We come next to the fourth among the standard “centres of a triangle”.

Problem 165 Given 4ABC, let L be the midpoint of the side BC. The
line AL is called a median of 4ABC. (It is not at all obvious, but if we
imagine the triangle as a lamina, having a uniform thickness, then 4ABC
would exactly balance if placed on a knife-edge running along the line AL.)
Let M be the midpoint of the side CA, so that BM is another median of
4ABC. Let G be the point where AL and BM meet.

(a)(i) Prove that 4ABL and 4ACL have equal area. Conclude that 4ABG
and 4ACG have equal area.

(ii) Prove that 4BCM and 4BAM have equal area. Conclude that
4BCG and 4BAG have equal area.

(b) Let N be the midpoint of AB. Prove that CG and GN are the same
straight line (i.e. that =CGN is a straight angle). Hence conclude that
the three medians of any triangle always meet in a point G. 4

The point where all three medians meet is called the centroid of the triangle.
For the geometry of the triangle, this is all you need to know. However, it
is worth noting that the centroid is the point that would be the ‘centre of
gravity’ of the triangle if the triangle is thought of as a thin lamina with a
uniform distribution of mass.

Next we revisit, and reprove in the Euclidean spirit, a result that you proved
in Problem 95 using coordinates – namely the Midpoint Theorem.

Problem 166 (The Midpoint Theorem) Given any triangle 4ABC, let
M be the midpoint of the side AC, and let N be the midpoint of the side AB.
Draw in MN and extend it beyond N to a point M 1 such that MN “ NM 1.

(a) Prove that 4ANM ” 4BNM 1.
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(b) Conclude that BM 1 “ CM and that BM 1 ‖ CM .

(c) Conclude that MM 1BC is a parallelogram, so that CB “ MM 1. Hence
MN is parallel to CB and half its length. 4

The Midpoint Theorem can be reworded as follows:

Given 4AMN.
Extend AM to C such that AM “MC and extend AN to B such
that AN “ NB.
Then CB ‖MN and CB “ 2 ¨MN .

This rewording generalizes SAS-congruence in a highly suggestive way, and
points us in the direction of “SAS-similarity”.

SAS-similarity (ˆ2): if A1B1 “ 2 ¨AB, =BAC “ =B1A1C 1, and
A1C 1 “ 2 ¨AC, then
B1C 1 “ 2 ¨BC, =ABC “ =A1B1C 1, and =BCA “ =B1C 1A1.

Proof Extend AB to the point B2 such that AB2 “ A1B1, and
extend AC to the point C2 such that AC2 “ A1C 1.
Then 4B2AC2 ” 4B1A1C 1 (by SAS-congruence), so
B2C2 “ B1C 1, =B2C2A “ =B1C 1A1, =C2B2A “ =C 1B1A1.
By construction we have AB2 “ 2 ¨AB, and AC2 “ 2 ¨AC.
Hence (by the Midpoint Theorem): B2C2 “ 2 ¨ BC (so B1C 1 “
2 ¨ BC), and BC ‖ B2C2 (so =BCA “ =B2C2A and =CBA “

=C2B2A).
6 =B2C2A “ =B1C 1A1 “ =BCA,
and =C2B2A “ =C 1B1A1 “ =CBA. QED

The SAS-similarity (ˆ2) interpretation of the Midpoint Theorem is like the
SAS-congruence criterion in that one pair of corresponding angles in 4BAC
and 4B1A1C 1 are equal, while the sides on either side of this angle in the
two triangles are related; but instead of the two pairs of corresponding sides
being equal, the sides of 4B1A1C 1 are double the corresponding sides of
4BAC.

In general we say that

4ABC is similar to 4A1B1C 1 (written as 4ABC „ 4A1B1C 1)
with scale-factor m if each angle of 4ABC is equal to the
corresponding angle of 4A1B1C 1, and if corresponding sides are
all in the same ratio:

A1B1 : AB “ B1C 1 : BC “ C 1A1 : CA “ m : 1.
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If two triangles 4A1B1C 1 and 4ABC are similar, with (linear) scale factor
A1B1 : AB “ m : 1, then the ratio between their areas is

areap4A1B1C 1q : areap4ABCq “ m2 : 1.

Two similar triangles 4ABC and 4A1B1C 1 give rise to six matching pairs:

• the three pairs of corresponding angles (which are equal in pairs), and

• the three pairs of corresponding sides (which are in the same ratio).

In the case of congruence, the congruence criteria tell us that we do not
need to check all six pairs to guarantee that two triangles are congruent:
these criteria guarantee that certain triples suffice. The similarity criteria
guarantee much the same for similarity.

Suppose we are given triangles 4ABC, 4A1B1C 1.

AAA-similarity: If

=ABC “ =A1B1C 1, =BCA “ =B1C 1A1, =CAB “ =C 1A1B1,

then
A1B1 : AB “ B1C 1 : BC “ C 1A1 : CA,

so the two triangles are similar.

SSS-similarity: If

A1B1 : AB “ B1C 1 : BC “ C 1A1 : CA,

then

=ABC “ =A1B1C 1, =BCA “ =B1C 1A1, =CAB “ =C 1A1B1,

so the two triangles are similar.

SAS-similarity: If

A1B1 : AB “ A1C 1 : AC “ m : 1

and
=B1A1C 1 “ =BAC,

then
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B1C 1 : BC “ A1B
1
: AB “ A1C 1 : AC

and
=A1B1C 1 “ =ABC, =B1C 1A1 “ =BCA,

so the two triangles are similar.

Our rewording of the Midpoint Theorem gave rise to a version of the third
of these criteria, with m “ 2.

AAA-similarity in right angled triangles is what makes trigonometry
possible. Suppose that two triangles 4ABC, 4A1B1C 1 have right angles at
A and at A1. If =ABC “ =A1B1C 1, then (since the angles in each triangle
add to two right angles) we also have =BCA “ =B1C 1A1. It then follows
(from AAA-similarity) that

A1B1 : AB “ B1C 1 : BC “ C 1A1 : CA,

so the trig ratio in 4ABC
sinB “

AC

BC

has the same value as the corresponding ratio in 4A1B1C 1

sinB1 “
A1C 1

B1C 1
.

Hence this ratio depends only on the angle B, and not on the triangle in
which it occurs. The same holds for cos =B and for tan =B.

The art of solving geometry problems often depends on looking for, and
identifying, similar triangles hidden in a complicated configuration. As an
introduction to this, we focus on three classic properties involving circles,
where the figures are sufficiently simple that similar triangles should be fairly
easy to find.

Problem 167 The point P lies outside a circle. The tangent from P touches
the circle at T , and a secant from P cuts the circle at A and at B. Prove
that PAˆ PB “ PT 2. 4

Problem 168 The point P lies outside a circle. Two secants from P meet
the circle at A, B and at C, D respectively. Prove in two different ways that

PAˆ PB “ PC ˆ PD. 4
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Problem 169 The point P lies inside a circle. Two secants from P meet
the circle at A, B and at C, D respectively. Prove that

PAˆ PB “ PC ˆ PD. 4

We end our summary of the foundations of Euclidean geometry by deriving
the familiar formula for the area of a trapezium and its 3-dimensional
analogue, and a formulation of the similarity criteria which is often
attributed to Thales (Greek 6th century BC).

Problem 170 Let ABCD be a trapezium with AB ‖ DC, in which AB
has length a and DC has length b.

(a) Let M be the midpoint of AD and let N be the midpoint of BC. Prove
that MN ‖ AB and find the length of MN .

(b) If the perpendicular distance between AB and DC is d, find the area of
the trapezium ABCD. 4

Problem 171 A pyramid ABCDE, with apex A and square base BCDE of
side length b, is cut parallel to the base at height d above the base, leaving
a frustum of a pyramid, with square upper face of side length a. Find a
formula for the volume of the resulting solid (in terms of a, b, and d). 4

The following general result allows us to use “equality of ratios of line
segments” whenever we have three parallel lines (without first having to
conjure up similar triangles).

Problem 172 (Thales’ Theorem) The lines AA1 and BB1 are parallel.
The point C lies on the line AB, and C 1 lies on the line A1B1 such that
CC 1 ‖ BB1. Prove that AB : BC “ A1B1 : B1C 1. 4

Under certain conditions, the similarity criteria guarantee the equality of
ratios of sides of two triangles. Thales’ Theorem extends this “equality of
ratios” to line segments which arise whenever two lines cross three parallel
lines. One of the simplest, but most far-reaching, applications of this
result is the tie-up between geometry and algebra which lies behind ruler
and compasses constructions, and which underpins Descartes’ (1596–1650)
re-formulation of geometry in terms of coordinates (see Problem 173).

Thales (c. 620–c. 546 BC) was part of the flowering of Greek thought having
its roots in Milesia (in the south west of Asia Minor, or modern Turkey).
Thales seems to have been interested in almost everything – philosophy,
astronomy, politics, and also geometry. In Britain his name is usually
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attached to the fact that the angle subtended by a diameter is a right angle.
On the continent, his name is more strongly attached to the result in Problem
172. His precise contribution to geometry is unclear – but he seems to have
played a significant role in kick-starting what became (300 years later) the
polished version of Greek mathematics that we know today.

Thales’ contributions in other spheres were perhaps even more significant
than in geometry. He seems to have been among the first to try to
“explain” phenomena in reductionist terms – identifying “water” as the
single “element”, or first principle, from which all substances are derived.
Anaximenes (c. 586–c. 526 BC) later argued in favour of “air” as the
first principle. These two elements, together with “fire” and “earth”,
were generally accepted as the four Greek “elements” – each of which was
supposed to contribute to the construction of observed matter and change
in different ways.

Problem 173 To define “length”, we must first decide which line segment
is deemed to have unit length. So suppose we are given line segments XY
of length 1, AB of length a, (i.e. AB : XY “ a : 1), and CD of length b.

(a) Use Problem 137 to construct a segment of length a ` b, and if a ě b, a
segment of length a´ b.

(b) Show how to construct a line segment of length ab and a segment of length
a
b .

(c) Show how to construct a line segment of length
?
a. 4

5.3. Areas, lengths and angles

Problem 174 A rectangular piece of fruitcake has a layer of icing on top
and down one side to form a larger rectangular slab of cake (as shown in
Figure 3).

Figure 3: Icing on the cake
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Describe how to make a single straight cut so as to divide both the fruitcake
and the icing exactly in half. (The thickness of the icing on top is not
necessarily the same as the thickness down the side.) 4

Problem 175

(a) What is the angle between the two hands of a clock at 1:35? Can you find
another time when the angle between the two hands is the same as this?

(b) How many times each day do the two hands of a clock ‘coincide’? And at
what times do they coincide?

(c) If we add a second hand, how many times each day do the three hands
coincide? 4

Problem 176 The twelve hour marks for a clock are marked on the
circumference of a unit circle to form the vertices of a regular dodecagon
ABCDEFGHIJKL. Calculate exactly (i.e. using Pythagoras’ Theorem
rather than trigonometry) the lengths of all the possible line segments joining
two vertices of the dodecagon. 4

Problem 177 Consider the lattice of all points pk,m, nq in 3-dimensions
with integer coordinates k, m, n. Which of the following distances can be
realised between lattice points?
?

1,
?

2,
?

3,
?

4,
?

5,
?

6,
?

7,
?

8,
?

9,
?

10,
?

11,
?

12,
?

13,
?

14,
?

15,
?

16,
?

17.
4

Problem 178

(a) Five vertices A, B, C, D, E are arranged in cyclic order. However
instead of joining each vertex to its two immediate neighbours to form
a convex pentagon, we join each vertex to the next but one vertex to form
a pentagonal star, or pentagram ACEBD. Calculate the sum of the five
“angles” in any such pentagonal star.

(b) There are two types of 7-gonal stars. Calculate the sum of the angles at
the seven vertices for each type.

(c) Try to extend the previous two results (and the proofs) to arbitrary n-gonal
stars. 4

Problem 179

(a) A regular pentagon ABCDE with edges of length 1 is surrounded in the
plane by five new regular pentagons – ABLMN joined to AB, BCOPQ
joined to BC, and so on.
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(i) Prove that M, N , X, Y lie on a line.

(ii) Prove that MPSV Y is a regular pentagon.

(iii) Find the edge length of this larger surrounding regular pentagon.

(b) Given a regular pentagon MPSV Y , with edge length 1, draw the five
diagonals to form the pentagram MSY PV . Let PY meet MV at A, and
MS at B; let PV meet MS at C and SY at D; and let SY meet VM at
E.

(i) Prove that ABCDE is a regular pentagon.

(ii) Prove that A, B, and M are three vertices of a regular pentagon
ABLMN , where L lies on MP and N lies on MY .

(iii) Find the edge length of the regular pentagon ABCDE. 4

5.4. Regular and semi-regular tilings in the plane

In Problem 36 we saw that a regular n-gon has a circumcentre O. If we
join each vertex to the point O, we get n triangles, each with angle sum
π. Hence the total angle sum in all n triangles is πn. Since the n angles
around the point O add to 2π, the angles of the regular n-gon itself have
sum pn´ 2qπ. Hence each angle of the regular n-gon has size

`

1´ 2
n

˘

π. (In
the next chapter you will prove the general result that the sum of the angles
in any n-gon is equal to pn´ 2qπ radians.)

Problem 180 A regular tiling of the plane is an arrangement of identical
regular polygons, which fit together edge-to-edge so as to cover the plane
with no overlaps.

(a) Prove that if a regular tiling of the plane with p-gons is possible, then
p “ 3, 4, or 6.

(b) Prove that a regular tiling of the plane exists for each of the values in (a).
4

We refer to the arrangement of tiles around a vertex as the vertex figure. In
a regular tiling all vertex figures are automatically identical, so it is natural
to refer to the tiling in terms of its vertex figure. When p “ 3, exactly q “ 6
tiles fit together at each vertex, and we abbreviate “six equilateral triangles”
as 36. In the same way we denote the tiling whose vertex figure consists of
“four squares” as 44, and the tiling whose vertex figure consists of “three
regular hexagons” as 63.

The natural approach in part (a) of Problem 180 is first to identify which
vertex figures have no gaps or overlaps – giving a necessary condition for a
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regular tiling to exist. It is tempting to stop there, and to assume that this
obvious necessary condition is also sufficient. The temptation arises in part
because 2-dimensional regular tilings are so familiar. But it is important to
recognize the distinction between a necessary and a sufficient condition; so
the temptation should be resisted, and a construction given.

The procedure hidden in the solution to Problem 180 illustrates a key
strategy, which dates back to the ancient Greeks, and which is called the
method of analysis.

• First, we imagine that we have a typical solution to the problem – perhaps
by giving it a name (even though we do not yet know anything about such
a solution).

• We then use the given conditions to deduce features which any such
solution must necessarily have.

• And we continue deriving more and more necessary conditions until we
believe our list of derived conditions may also be sufficient.

• Finally we show that any configuration which satisfies our final derived
list of necessary conditions is in fact a solution to the original problem,
so that the list of necessary conditions is in fact sufficient, and we have
effectively pinned down all possible solutions.

This is what we did in a very simple way in the solution to Problem 180:
the condition on vertex figures gave an evident necessary condition, which
turned out to be sufficient to guarantee that such a tiling exists. The same
general strategy guided our classification of primitive Pythagorean triples
back in Problem 23.

In the seventeenth century, this ancient Greek strategy was further developed
by Fermat (1601–1665), and by Descartes (1596–1650). For example, Fermat
left very few proofs; but his proof that the equation

x4 ` y4 “ z4

has no solutions in positive integers x, y, z illustrated the method:

• Fermat started by supposing that a solution exists, and concluded that
px2, y2, z2q would then be a Pythagorean triple.

• The known formula for such Pythagorean triples then allowed him to
derive even stronger necessary conditions on x, y, z.

• These conditions were so strong they could never be satisfied!

Descartes developed a “method”, whereby hard geometry problems could
be solved by translating them into algebra – essentially using the method of
analysis.
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• Faced with a hard problem, Descartes first imagined that he had a point,
or a locus, or a curve of the kind required for a solution.

• Then he introduced coordinates “x” and “y” to denote unknowns that
were linked in the problem to be solved, and interpreted the given
conditions as equations which the unknowns x and y would have to satisfy
(i.e. as necessary constraints).

• The solutions to these equations then corresponded to possible solutions
of the original problem.

• Sometimes the algebra did not quite generate a sufficient condition,
giving rise to “pseudo-solutions” (values of x that satisfy the necessary
conditions, but which did not correspond to actual solutions). So it was
important to check each apparent solution – exactly as we did in Problem
180(b), where we checked that we can construct tilings for each of the
vertex figures that arise in part (a).

The importance of the final step in this process (checking that the list of
necessary constraints is also sufficient) is underlined in the next problem
where we try to classify certain “almost regular” tilings.

Problem 181 A semi-regular tiling of the plane is an arrangement
of regular polygons (not necessarily all identical), which fit together
edge-to-edge so as to cover the plane without overlaps, and such that the
arrangements of tiles around any two vertices are congruent.

(a)(i) Refine your argument in Problem 180(a) to list all possible vertex
figures in a semi-regular tiling.

(ii) Try to find additional necessary conditions to eliminate vertex figures
which cannot be realized, until your list of necessary conditions seems
likely to be sufficient.

(b) The necessary conditions in part (a) give rise to a finite list of possible
vertex figures. Construct all possible tilings corresponding to this list of
possible vertex figures. 4

Semi-regular tilings are often called Archimedean tilings. The reason for this
name remains unclear. Pappus (c. 290–c. 350 AD), writing more than 500
years after the death of Archimedes (d. 212 BC), stated that Archimedes
classified the semi-regular polyhedra. Now the classification of semi-regular
polyhedra (Problem 190) uses a similar approach to the classification of
planar tilings, except that the sum of the angles at each vertex has sum less
than (rather than exactly equal to) 360˝. So it may be that the semi-regular
tilings are named after Archimedes simply because he did something similar
for polyhedra; or it may be that, since inequalities are harder to control than
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equalities, someone inferred (perhaps dodgily) that Archimedes must have
known about semi-regular tilings as well as about semi-regular polyhedra.

Whatever the reason, tilings and polyhedra have fascinated mathematicians,
artists and craftsmen for all sorts of unexpected reasons – as indicated by:

• the fact that the classification and construction of the five regular
polyhedra appear as the culmination of the thirteen books of Elements
by Euclid (flourished c. 300 BC);

• the ancient Greek attempt to link the five regular polyhedra with the four
elements (earth, air, fire, and water) and the cosmos;

• the ceramic tilings to be found in Islamic art - for example, on the walls
of the Alhambra in Grenada;

• the book De Divina Proportione by Luca Pacioli (c. 1445–1509), and the
continuing fascination with the Golden Ratio;

• the geometric sketches of Leonardo da Vinci (1452–1519);

• the work of Kepler (1571–1630) who used the regular polyhedra to explain
his bold theoretical cosmology in the Astronomia Nova (1609).

5.5. Ruler and compasses constructions for regular
polygons

Euclid’s Elements include methods for constructing the regular polygons
that are required for the construction of the regular polyhedra (see Section
5.6). In one sense, Euclid is thoroughly modern: he is reluctant to work with
entities that cannot be constructed. And for him, geometrical construction
means construction “using ruler and compasses” only.

For each regular polygon, there are two related (and sometimes very
different) construction problems:

• given two points A and B, construct the regular n-gon with AB as an
edge of the regular polygon;

• given two points O and A, construct the regular n-gon ABCD ¨ ¨ ¨
inscribed in the circle with centre O and passing through A, that is with
circumradius OA.

Before Problem 137 we saw how to construct an equilateral triangle ABC
given the points A, B. And in Problem 36 we saw that every regular polygon
has a circumcentre O.
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Problem 182 Given points O, A, show how to construct the regular 3-gon
ABC with circumcentre O. 4

Problem 183

(a) Given two points O, A, show how to construct a regular 4-gon ABCD
with circumcentre O.

(b) Given points A, B, show how to construct a regular 4-gon ABCD. 4

Problem 184

(a)(i) Given two points O, A, show how to construct a regular 6-gon
ABCDEF with circumcentre O.

(ii) Given two points O, A, show how to construct a regular 8-gon
ABCDEFGH with circumcentre O.

(b)(i) Given points A, B, show how to construct a regular 6-gon ABCDEF .

(ii) Given points A, B, show how to construct a regular 8-gon
ABCDEFGH. 4

Problem 185

(a)(i) Given two points O, A, show how to construct a regular 5-gon ABCDE
with circumcentre O.

(ii) Given points O, A, show how to construct a regular 10-gon
ABCDEFGHIJ with circumcentre O.

(b)(i) Given points A, B, show how to construct a regular 5-gon ABCDE.

(ii) Given points A, B, show how to construct a regular 10-gon
ABCDEFGHIJ . 4

We shall not prove it here, but it is impossible to construct a regular 7-gon,
or a regular 9-gon, or a regular 11-gon using ruler and compasses. All
constructions with ruler and compasses come down to two moves:

• if a is a known length, then
?
a can be constructed (see Problem 173(c));

• if an n-gon can be constructed, then the sides can be bisected to produce
a 2n-gon.
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Put slightly differently, all ruler and compasses constructions involve solving
linear or quadratic equations, so the only new points, or lengths we can
construct are those which involve iterated square roots of expressions or
lengths which were previously known.

This iterated extraction of square roots is linked to a fact first proved by
Gauss (1777–1855), namely that the only regular p-gons (where p is a prime)
that can be constructed are those where p is a Fermat prime – that is, a prime
of the form p “ 2k ` 1 (in which case k has to be a power of 2: see Problem
118). Gauss proved (as a teenager, though it was first published in his book
Disquisitiones arithmeticae in 1801):

a regular n-gon can be constructed with ruler and compasses if and
only if n has the form

2m ¨ p1 ¨ p2 ¨ p3 ¨ ¨ ¨ pk,

where p1, p2, p3, . . . , pk are distinct Fermat primes.

As we noted in Chapter 2, the only known Fermat primes are the five
discovered by Fermat himself, namely 3, 5, 17, 257, and 65 537.

5.6. Regular and semi-regular polyhedra

We have seen how regular polygons sometimes fit together edge-to-edge in
the plane to create tilings of the whole plane. When tiling the plane, the
angles of polygons meeting edge-to-edge around each vertex must add to
360˝, or two straight angles. If the angles at a vertex add to less than 360˝,
then we are left with an empty gap and two free edges; and when these two
free edges are joined, or glued together, the vertex figure rises out of the
plane and becomes a 3-dimensional corner, or solid angle.

To form such a corner we need at least three polygons, or faces – and hence
at least three edges and three faces meet around each vertex. For example,
three squares fit nicely together in the plane, but leave a 90˝ gap. When the
two spare edges are glued together, the result is to form a corner of a cube,
where we have a vertex figure consisting of three regular 4-gons: so we refer
to this vertex figure as 43.

Given a 3-dimensional corner, it may be possible to extend the construction,
repeating the same vertex figure at every vertex. The resulting shape may
then ‘close up’ to form a convex polyhedron. The assumption that in each
vertex figure, the angles meeting at that vertex add to less than 360˝, means
that all the corners then project outwards – which is roughly what we mean
when we say that the polyhedron is “convex”.

A regular polygon is an arrangement of finitely many congruent line
segments, with two line segments meeting at each vertex (and never crossing,
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or meeting internally), and with all vertices alike; a regular polygon can
be inscribed in a circle (Problem 36), and so encloses a convex subset of
the plane. In the same spirit, a regular polyhedron is an arrangement of
finitely many congruent regular polygons, with two polygons meeting at each
edge, and with the same number of polygons in a single cycle around every
vertex, enclosing a convex subset of 3-dimensional space (i.e. the polyhedron
separates the remaining points of 3D into those that lie ‘inside’ and those that
lie ‘outside’, and the line segment joining any two points of the polyhedral
surface contains no points lying outside the polyhedron).

The important constraints here are the assumptions: that the polygons meet
edge-to-edge with exactly two polygons meeting at each edge; that the same
number of polygons meet around every vertex; and that the overall number
of polygons, or faces, is finite. The assumption that the figure is convex
should be seen as a temporary additional constraint, which means that the
angles in polygons meeting at each vertex have sum less than 360˝.

Problem 186 A vertex figure is to be formed by fitting regular p-gons
together, edge-to-edge, for a fixed p. If there are q of these p-gons at a
vertex, we denote the vertex figure by pq. If the angles at each vertex add
to less than 360˝, prove that the only possible vertex figures are 33, 34, 35,
43, 53. 4

The vertex figure 43 is realized by the way the positive axes meet at the
vertex p0, 0, 0q, where

• the unit square p0, 0, 0q, p1, 0, 0q, p1, 1, 0q, p0, 1, 0q in the xy-plane (with
equation z “ 0) meets

• the unit square p0, 0, 0q, p1, 0, 0q, p1, 0, 1q, p0, 0, 1q in the xz-plane (with
equation y “ 0), and

• the unit square p0, 0, 0q, p0, 1, 0q, p0, 1, 1q, p0, 0, 1q in the yz-plane (with
equation x “ 0).

If we include an eighth vertex p1, 1, 1q, and

• the unit square p0, 0, 1q, p1, 0, 1q, p1, 1, 1q, p0, 1, 1q in the plane with
equation z “ 1,

• the unit square p0, 1, 0q, p1, 1, 0q, p1, 1, 1q, p0, 1, 1q in the plane with
equation y “ 1,

• the unit square p1, 0, 0q, p1, 1, 0q, p1, 1, 1q, p1, 0, 1q in the plane with
equation x “ 1,
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we see that all eight vertices have the same vertex figure 43. Hence the
possible vertex figure 43 in Problem 186 arises as the vertex figure of a
regular polyhedron – namely the cube.

If we select the four vertices whose coordinates have odd sum A “ p1, 0, 0q,
B “ p0, 1, 0q, C “ p0, 0, 1q, D “ p1, 1, 1), then the distance between any
two of these vertices is equal to

?
2, so each triple of vertices (such as

p1, 0, 0q, p0, 1, 0q, p0, 0, 1q) defines a regular 3-gon ABC, with three such
3-gons meeting at each vertex of ABCD. Hence the possible vertex figure
33 in Problem 186 arises as the vertex figure of a regular polyhedron –
namely the regular tetrahedron (tetra = four; hedra = faces).

Problem 187 With A “ p1, 0, 0q etc. as above, write down the coordinates
of the six midpoints of the edges of the regular tetrahedron ABCD (or
equivalently, the six centres of the faces of the original cube). Each edge of
the regular tetrahedron meets four other edges of the regular tetrahedron
(e.g. AB meets AC and AD at one end, and BC and BD at the other end).
Choose an edge AB and its midpoint P . Calculate the distance from P to
the midpoints Q, R, S, T of the four edges which AB meets (namely the
midpoints of AC, AD, BD, BC respectively). Confirm that the triangles
4PQR, 4PRS, 4PST , 4PTQ are all regular 3-gons, and that the vertex
figure at P is of type 34 . Conclude that the possible vertex figure 34 in
Problem 186 arises as the vertex figure of a regular polyhedron PQRSTU
– namely the regular octahedron (octa = eight; hedra = faces). 4

Problem 188

(a) A regular tetrahedron ABCD has edges of length 2, and sits with its base
BCD on the table. Find the height of A above the base.

(b) A regular octahedron ABCDEF has four triangles meeting at each vertex.

(i) Let the four triangles which meet at A be ABC, ACD, ADE, AEB.
Prove that BCDE must be a square.

(ii) Suppose that all the triangles have edges of length 2, and that the
octahedron sits with one face BCF on the table – next to the regular
tetrahedron from part (a). Which of these two solids is the taller? 4

Problem 189 Let O “ p0, 0, 0q, A “ p1, 0, 0q, B “ p0, 1, 0q, C “ p0, 0, 1q
be four vertices of the cube as described after Problem 186 above. Draw
equal and parallel line segments (initially of unknown length 1´2a) through
the centres of each pair of opposite faces – running in the three directions
parallel to OA, or to OB, or to OC,



204 Geometry

• from N “ pa, 12 , 0q to P “ p1 ´ a, 12 , 0q and from Q “ pa, 12 , 1q to R “

p1´ a, 12 , 1q

• from S “ p 12 , 0, aq to T “ p 12 , 0, 1 ´ aq and from U “ p 12 , 1, aq to V “

p 12 , 1, 1´ aq

• from W “ p0, a, 12 q to X “ p0, 1 ´ a, 12 q and from Y “ p1, a, 12 q to Z “

p1, 1´ a, 12 q.
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Figure 4: Construction of the regular icosahedron.

These are to form all 12 vertices and six of the 30 edges (of length 1´ 2a) of
a polyhedron, see Figure 4. The other 24 edges join each of these 12 vertices
to its four natural neighbours on adjacent faces of the cube – to form the 20
triangular faces of the polyhedron: for example,

N joins: to S; to W ; to X; and to U .

(i) Prove that NS “ NW “ NX “ NU and calculate the length of NS.

(ii) Choose the value of the parameter a to guarantee that NP “ NS, so
that the five triangular faces meeting at the vertex N are all equilateral
triangles, and each vertex figure of the resulting polyhedron then has
vertex figure 35. 4

The polyhedron is called the regular icosahedron (icosa = twenty, hedra =
faces).

In the paragraph before Problem 187 we constructed the dual of the cube by
marking the circumcentre of each of the six square faces of the cube, and then
joining each circumcentre to its four natural neighbours. We now construct
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the dual of the regular icosahedron in exactly the same way. Each of the 20
circumcentres of the 20 triangular faces of a regular icosahedron has three
natural neighbours (namely the circumcentres of the three neighbouring
triangular faces). If we construct the 30 edges joining these 20 circumcentres,
the five circumcentres of the five triangles in each vertex figure of the regular
icosahedron form a regular pentagon, which becomes a face of the dual
polyhedron – so we get 12 regular pentagons (one for each vertex of the
regular icosahedron), with three pentagons meeting at each vertex of the
dual polyhedron to give a vertex figure 53 at each of the 20 vertices, which
form a regular dodecahedron.

Hence each of the five possible vertex figures in Problem 186 can be realised
by a regular polyhedron. These are sometimes called the Platonic solids
because Plato (c. 428–347 BC) often used them as illustrative examples in
his writings on philosophy.

Constructing the five regular polyhedra is part of the essence of mathematics
for everyone. In contrast, what comes next (in Problem 190) may be viewed
as “optional” at this stage. The ideas are worth noting, but the details may
be best postponed for a rainy day.

Just as you classified semi-regular tilings in Section 5.4, so one can look for
semi-regular polyhedra. A polyhedron is semi-regular if all of its faces are
regular polygons (possibly with differing numbers of edges), fitting together
edge-to-edge, with exactly the same ring of polygons around each vertex
– the vertex figure of the polyhedron. Problem 190 uses “the method of
analysis” - combining simple arithmetic, inequalities, and a little geometric
insight – to achieve a remarkable complete classification of semi-regular
polyhedra. There are usually said to be thirteen individual semi-regular
polyhedra (excluding the five regular polyhedra); but one of these has a
vertex figure that extends to a polyhedron in two different ways – each
being the reflection of the other. There are in addition two infinite families
– namely

• the n-gonal prisms, which consist of two parallel regular n-gons, with the
top one positioned exactly above the bottom one, the two being joined by
a belt of n squares (so with vertex figure n ¨ 42); and

• the n-gonal antiprisms, which consist of two parallel regular n-gons, but
with the top n-gon turned through an angle of π

n radians relative to the
bottom one, the two being joined by a belt of 2n equilateral triangles (so
with a vertex figure n ¨ 33).

Notice that the cube can also be interpreted as being a “4-gonal prism”, and
the regular octahedron can be interpreted as being a “3-gonal antiprism”.
Those interested in regular and semi-regular polyhedra are referred to the
classic book Mathematical models by H.M. Cundy and A.P. Rollett.
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Problem 190 Find possible combinations of three or more regular polygons
whose angles add to less than 360˝, and hence derive a complete list
of possible vertex figures for a (convex) semi-regular polyhedron. Try
to eliminate those putative vertex figures that cannot be extended to a
semi-regular polyhedron. 4

5.7. The Sine Rule and the Cosine Rule

Where given information, or a specified geometrical construction, determines
an angle or length uniquely, it is sometimes – but not always – possible to
find this angle or length using simple-minded angle-chasing and congruence.

Problem 191

(a) In the quadrilateral ABCD the two diagonals AC and BD cross at X.
Suppose AB “ BC, =BAC “ 60˝, =DAC “ 40˝, =BXC “ 100˝.

(i) Calculate (exactly) =ADB and =CBD.

(ii) Calculate =BDC and =ACD.

(b) In the quadrilateral ABCD the two diagonals AC and BD cross at X.
Suppose AB “ BC, =BAC “ 70˝, =DAC “ 40˝, =BXC “ 100˝.

(i) Calculate (exactly) the size of =BDC `=ACD.

(ii) Explain how we can be sure that =BDC and =ACD are uniquely
determined, even though we cannot calculate them immediately. 4

If it turns out that the simplest tools do not allow us to determine angles and
lengths, this is usually because we are only using the most basic properties:
the congruence criteria, and the parallel criterion. The general art of ‘solving
triangles’ depends on the similarity criterion (usually via trigonometry).
And the two standard techniques for ‘solving triangles’ that go beyond
“angle-chasing” and congruence are the Sine Rule, which was established
back in Problem 32 (and its consequences, such as the area formula 1

2ab sinC
– see Problem 33), and the Cosine Rule.

The next problem invites you to use Pythagoras’ Theorem to prove the
Cosine Rule – an extension of Pythagoras’ Theorem which applies to all
triangles ABC (including those where the angle at C may not be a right
angle).

Problem 192 (The Cosine Rule) Given 4ABC, let the perpendicular
from A to BC meet BC at P . If P “ C, then we know (by Pythagoras’
Theorem) that c2 “ a2 ` b2. Suppose P ‰ C.
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(i) Suppose first that P lies on the line segment CB, or on CB extended
beyond B. Express the lengths of PC and AP in terms of b and =C.
Then apply Pythagoras’ Theorem to 4APB to conclude that

c2 “ a2 ` b2 ´ 2ab cosC.

(ii) Suppose next that P lies on the line segment BC extended beyond C.
Prove once again that

c2 “ a2 ` b2 ´ 2ab cosC. 4

Problem 193 Go back to the configuration in Problem 191(b). The
required angles are unaffected by scaling, so we may choose AB “ BC “ 1.
Devise a strategy using the Sine Rule and the Cosine Rule to calculate
=BDC and =ACD exactly. 4

It is worth reflecting on what the Cosine Rule really tells us:

(i) if in a triangle, we know any two sides (a and b) and the included angle
(C), then we can calculate the third side (c); and

(ii) if we know all three sides pa, b, cq, then we can calculate any angle (say
C).

Hence if we know three sides, or two sides and the angle between them, we
can work out all of the angles. The Sine Rule then complements this by
ensuring that:

(iii) if we know any side and two angles (in which case we also know the third
angle), then we can calculate the other two sides; and

(iv) if we know any angle A, and two sides – one of which is the side a opposite
A, then we can calculate (one and hence) both the other angles (and hence
the third side).

The upshot is that once a triangle is uniquely determined by the given data,
we can “solve” to find all three sides and all three angles.

Trigonometry has a long and very interesting history (which is not at all easy
to unravel). Euclid (flourished c. 300 BC) understood that corresponding
sides in similar figures were “proportional”. And he stated and proved the
generalization of Pythagoras’ Theorem, which we now call the Cosine Rule;
but he did this in a theoretical form, without introducing cosines. Euclid’s
versions for acute-angled and obtuse-angled triangles involved correction
terms with opposite signs, so he proved them separately (Elements, Book
II, Propositions 12 and 13).
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However, the development of trigonometry as an effective theoretical and
practical tool seems to have been due to Hipparchus (died c. 125 BC), to
Menelaus (c. 70–130 AD), and to Ptolemy (died 168 AD). Once trigonometry
moved beyond the purely theoretical, the combination of

• the (exact) language of trigonometry, together with the Sine Rule and the
Cosine Rule, and

• (approximate) “tables of trigonometric ratios” (nowadays replaced by
calculators)

liberated astronomers, and later engineers, to calculate lengths and angles
efficiently, and as accurately as they required.

In mathematics we either work with exact values, or we have to control errors
precisely. But trigonometry can still be a valuable exact tool, provided we
remember the lessons of working with fractions such as 2

3 , or with surds such

as
?

2, or with constants such as π, and resist the temptation to replace them
by some unenlightening approximate decimal. We can replace cos´1

`

1
2

˘

`

“ π
3

˘

and cos´1
`

´ 1
2

˘ `

“ 2π
3

˘

by their exact values; but in general we need to

be willing to work with, and to think about, exact forms such as “cos´1
`

1
3

˘

”

and “cos´1
`

´ 1
3

˘

”, without switching to some approximate evaluation.

Problem 194

(a) Let ABCD be a regular tetrahedron with edges of length 2. Calculate the
(exact) angle between the two faces ABC and DBC.

(b) We know that in 2D five equilateral triangles fit together at a point leaving
just enough of an angle to allow a sixth triangle to fit. How many identical
regular tetrahedra can one fit together, without overlaps around an edge,
so that they all share the edge BC (say)? 4

Problem 195

(a) Let ABCDEF be a regular octahedron with vertices B, C, D, E adjacent
to A forming a square BCDE, and with edges of length 2. Calculate the
(exact) angle between the two faces ABC and FBC.

(b) How many identical regular octahedra can one fit together around an edge,
without overlaps, so that they all share the edge BC (say)? 4
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Problem 196 Go back to the scenario of Problem 188, with a regular
tetrahedron and a regular octahedron both having edges of length 2, and
both having one face flat on the table. Suppose we slide the tetrahedron
across the table towards the octahedron. What unexpected phenomenon is
guaranteed by Problems 194(a) and 195(a)? 4

Problem 197 Consider the cube with edges of length 2 running parallel to
the coordinate axes, with its centre at the origin p0, 0, 0q, and with opposite
corners at p1, 1, 1q and p´1,´1,´1q. The x-, y-, and z-axes, and the xy-,
yz-, and zx-planes cut this cube into eight unit cubes – one sitting in each
octant.

(i) Let A “ p0, 0, 1q, B “ p1, 0, 0q, C “ p0, 1, 0q, W “ p1, 1, 1q. Describe the
solid ABCW .

(ii) Let D “ p´1, 0, 0q, X “ p´1, 1, 1q. Describe the solid ACDX.

(iii) Let E “ p0,´1, 0q, Y “ p´1,´1, 1q. Describe the solid ADEY .

(iv) Let Z “ p1,´1, 1q. Describe the solid AEBZ.

(v) Let F “ p0, 0,´1q and repeat steps (i)–(iv) to obtain the four mirror image
solids which lie beneath the xy-plane.

(vi) Describe the solid ABCDEF which is surrounded by the eight identical
solids in (i)–(v). 4

Problem 198 Consider a single face ABCDE of the regular dodecahedron,
with edges of length 1, together with the five pentagons adjacent to it – so
that each of the vertices A, B, C, D, E has vertex figure 53. Each vertex
figure is rigid, so the whole arrangement of six regular pentagons is also
rigid. Let V , W , X, Y , Z be the five vertices adjacent to A, B, C, D, E
respectively. Calculate the dihedral angle between the two pentagonal faces
that meet at the edge AB. 4

Problem 199 Suppose a regular icosahedron (Problem 189) has edges of
length 2. Position vertex A at the ‘North pole’, and let BCDEF be the
regular pentagon formed by its five neighbours.

(a)(i) Calculate the exact angle between the two faces ABC and ACD.

(ii) How many identical regular icosahedra can one fit together, without
overlaps, around a single edge?
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(b) Let C be the circumcircle of BCDEF , and let O be the circumcentre of
this regular pentagon.

(i) Prove that the three edge lengths of the right-angled triangle 4BOA
are the edge lengths of the regular hexagon inscribed in the circle C,
of the regular 10-gon inscribed in the circle C, and of the regular 5-gon
inscribed in the circle C.

(ii) Calculate the distance separating the plane of the regular pentagon
BCDEF , and the plane of the corresponding regular pentagon joined
to the ‘South pole’. 4

Notice that Problem 199(b) shows that the regular icosahedron can be
‘constructed’ in the Euclidean spirit: part (b)(i) is essentially Proposition 10
of Book XIII of Euclid’s Elements, and part (b)(ii) is implicit in Proposition
16 of the Book XIII. Once we are given the radius OB, we can:

• construct the regular pentagon BCDEF in the circle C;

• bisect the sides of the regular pentagon and hence construct the regular
10-gon BV C ¨ ¨ ¨ in the same circle;

• construct the vertical perpendicular at O, and transfer the length BV to
the point O to determine the vertex A directly above O;

• transfer the radius OB to the vertical perpendicular at O to determine the
plane directly below O, and hence construct the lower regular pentagon;
etc..

It may be worth commenting on a common confusion concerning the regular
icosahedron. Each regular polyhedron has a circumcentre, with all vertices
lying on a corresponding sphere. If we join any triangular face of the
regular icosahedron to the circumcentre O, we get a tetrahedron. These 20
tetrahedra are all congruent and fit together exactly at the point O “without
gaps or overlaps”. But they are not regular tetrahedra: the circumradius is
less than the edge length of the regular icosahedron.

Problem 200 Prove that the only regular polyhedron that tiles 3D
(without gaps or overlaps) is the cube. 4

In one sense the result in Problem 200 is disappointing. However, since
we know that there are all sorts of interesting 3-dimensional arrangements
related to crystals and the way atoms fit together, the message is really
that we need to look beyond regular tilings. For example, the construction
in Problem 197 shows how the familiar regular tiling of space with cubes
incorporates a semi-regular tiling of space with eight regular tetrahedra and
two regular octahedra at each vertex.



5.8. Circular arcs and circular sectors 211

5.8. Circular arcs and circular sectors

Length is defined for straight line segments, and area is defined in terms of
rectangles; neither measure is defined for shapes with curved boundaries –
unless, that is, they can be cunningly dissected and the pieces rearranged to
make a straight line, or a rectangle.

Figure 5: Dumbbell.

Problem 201 Four identical semicircles of radius 1 fit together to make the
dumbbell shape shown in Figure 5. Find the exact area enclosed without
using the formula for the area of a circle. 4

In general, making sense of length and area for shapes with curved
boundaries requires us to combine a little imagination with what we know
about straight line segments and polygons. Our goal here is to lead up to the
familiar results for the length of circular arcs and the area of circular sectors.
But first we need to explore the perimeter and area of regular polygons, and
the surface area of prisms and pyramids.

As so often in mathematics, to make sense of the perimeter and area of
regular polygons we need to look beyond their actual values (which will vary
according to the size of the polygon), and instead interpret these values
as a function of some normalizing parameter – such as the radius. The
calculations will be simpler if you first prove a general result.

Problem 202

(a) A regular n-gon and a regular 2n-gon are inscribed in a circle of radius 1.
The regular n-gon has edges of length sn “ s, while the regular 2n-gon
has edges of length s2n “ t. Prove that

t2 “ 2´
a

4´ s2.
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(b) A regular “2-gon” inscribed in the unit circle is just a diameter (repeated
twice), so has two identical edges of length s2 “ 2. Use the result in part
(a) to calculate the edge length s4 of a regular 4-gon, and the edge length
s8 of a regular 8-gon inscribed in the same circle.

(c) A regular 6-gon inscribed in the unit circle has edge length s6 equal to
the radius 1. Use the result in part (a) to calculate the edge length s3 of
a regular 3-gon inscribed in the unit circle, and the edge length s12 of a
regular 12-gon inscribed in the unit circle.

(d) In Problem 185 we saw that a regular 5-gon inscribed in the unit circle
has edge length

s5 “

a

10´ 2
?

5

2
.

Use the result in part (a) to calculate the edge length s10 of a regular
10-gon inscribed in the same circle. 4

Problem 203

(a) A regular n-gon is inscribed in a circle of radius r.

(i) Find the exact perimeter pn (in surd form): when n “ 3; when n “ 4;
when n “ 5; when n “ 6; when n “ 8; when n “ 10; when n “ 12.

(ii) Check that, for each n:
pn “ cn ˆ r

for some constant cn, where

c3 ă c4 ă c5 ă c6 ă c8 ă c10 ă c12 ¨ ¨ ¨

(b) A regular n-gon is circumscribed about a circle of radius r.

(i) Find the exact perimeter Pn (in surd form): when n “ 3; when n “ 4;
when n “ 5; when n “ 6; when n “ 8; when n “ 10; when n “ 12.

(ii) Check that, for each n:
Pn “ Cn ˆ r

for some constant Cn, where

C3 ą C4 ą C5 ą C6 ą C8 ą C10 ą C12 ¨ ¨ ¨

(c) Explain why c12 ă C12. 4

It follows from Problem 203 that
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• the perimeters pn and Pn of regular n-gons inscribed in, or circumscribed
about, a circle of radius r all have the same form:

(inscribed) pn “ cn ˆ r; (circumscribed) Pn “ Cn ˆ r.

• The perimeters of inscribed regular n-gons all increase with n, but remain
less than the perimeter of the circle, while

• the perimeters of the circumscribed regular n-gons all decrease with n,
but remain greater than the perimeter of the circle.

Hence

• the perimeter P of the circle appears to have the form P “ K ˆ r, where
the ratio

K “
perimeter

radius

satisfies

c3 ă c4 ă c5 ă c6 ă c8 ă c10 ă ¨ ¨ ¨ ă K ă ¨ ¨ ¨ ă C10 ă C8 ă C6 ă C5 ă C4 ă C3.

In particular, the value of the constant K lies somewhere between c12 “
6.21 ¨ ¨ ¨ and C12 “ 6.43 ¨ ¨ ¨ . If we now define the quotient K to be equal
to “2π”, we see that

pperimeter of circle of radius rq “ 2πr,

where π denotes some constant lying between 3.1 and 3.22

In this spirit one might reinterpret the first two bullet points as defining
two sequences of constants “πn” and “Πn” for n ě 3, such that

• (perimeter of a regular n-gon with circumradius r) “ 2πnr, where

π3 “
3
?

3

2
“ 2.59 ¨ ¨ ¨ , π4 “ 2

?
2 “ 2.82 ¨ ¨ ¨ , π5 “

5
a

10´ 2
?

5

4
“ 2.93 ¨ ¨ ¨ , π6 “ 3,

etc.,

and

• (perimeter of a regular n-gon with inradius r)“ 2Πnr, where

Π3 “ 3
?

3 “ 5.19 ¨ ¨ ¨ ,Π4 “ 4,Π5 “ 5

b

5´ 2
?

5 “ 3.63 ¨ ¨ ¨ ,Π6 “ 2
?

3 “ 3.46 ¨ ¨ ¨ ,

etc..

Moreover

• π3 ă π4 ă π5 ă π6 ă π8 ă ¨ ¨ ¨ ă π ă ¨ ¨ ¨ ă Π8 ă Π6 ă Π5 ă Π4 ă Π3.
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Problem 204 Find the exact length (in terms of π)

(i) of a semicircle of radius r;

(ii) of a quarter circle of radius r;

(iii) of the length of an arc of a circle of radius r that subtends an angle θ
radians at the centre. 4

In the next problem we follow a similar sequence of steps to conclude that
the quotient

L “
area of circle of radius r

r2

is also constant. The surprise lies in the fact that this different constant is
so closely related to the previous constant K.

Problem 205

(a) A regular n-gon is inscribed in a circle of radius r.

(i) Find the exact area an (in surd form): when n “ 3; when n “ 4; when
n “ 5; when n “ 6; when n “ 8; when n “ 10; when n “ 12.

(ii) Check that, for each n:
an “ dn ˆ r

2

for some constant dn, where

d3 ă d4 ă d5 ă d6 ă d8 ă d10 ă d12 ¨ ¨ ¨

(b) A regular n-gon is circumscribed about a circle of radius r.

(i) Find the exact area An (in surd form): when n “ 3; when n “ 4; when
n “ 5; when n “ 6; when n “ 8; when n “ 10; when n “ 12.

(ii) Check that, for each n:
An “ Dn ˆ r

2

for some constant Dn, where

D3 ą D4 ą D5 ą D6 ą D8 ą D10 ą D12 ¨ ¨ ¨

(c) Explain why d12 ă D12. 4

It follows from Problem 205 that

• the areas an and An of regular n-gons inscribed in, or circumscribed about,
a circle of radius r all have the same form:
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(inscribed) an “ dn ˆ r
2; (circumscribed) An “ Dn ˆ r

2.

• The areas of inscribed regular n-gons all increase with n, but remain less
than the area of the circle, while

• the areas of the circumscribed regular n-gons all decrease with n, but
remain greater than the area of the circle, whence

• the area A of the circle appears to have the form A “ L ˆ r2, where the
ratio

L “
area of circle of radius r

radius squared

satisfies

d3 ă d4 ă d5 ă d6 ă d8 ă d10 ¨ ¨ ¨ ă L ă ¨ ¨ ¨ ă D10 ă D8 ă D6 ă D5 ă D4 ă D3.

In particular, the value of L lies somewhere between d12 “ 3 and D12 “

12p2 ´
?

3q “ 3.21 ¨ ¨ ¨ . The surprise lies in the fact that the constant L
is exactly half of the constant K – that is, L “ π, so

(area of circle of radius r) “ πr2.

The next problem offers a heuristic explanation for this surprise.

Figure 6: Circle cut into 8 slices.

Problem 206 A regular 2n-gon ABCDE ¨ ¨ ¨ is inscribed in a circle of
radius r. The 2n radii OA,OB, . . . joining the centre O to the 2n vertices
cut the circle into 2n sectors, each with angle π

n (Figure 6).

These 2n sectors can be re-arranged to form an “almost rectangle”, by
orienting them alternately to point “up” and “down”. In what sense does
this “almost rectangle” have “height “ r” and “width = πr”? 4

Problem 207

(a) Find a formula for the surface area of a right cylinder with height h and
with circular base of radius r.
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(b) Find a similar formula for the surface area of a right prism with height h,
whose base is a regular n-gon with inradius r. 4

Problem 208

(a) Find the exact area (in terms of π)

(i) of a semicircle of radius r;

(ii) of a quarter circle of radius r;

(iii) of a sector of a circle of radius r that subtends an angle θ radians at
the centre.

(b) Find the area of a sector of a circle of radius 1, whose total perimeter
(including the two radii) is exactly half that of the circle itself. 4

Problem 209

(a) Find a formula for the surface area of a right circular cone with base of
radius r and slant height l.

(b) Find a similar formula for the surface area of a right pyramid with apex
A whose base BCDE ¨ ¨ ¨ is a regular n-gon with inradius r. 4

Problem 210

(a) Find an expression involving “sin π
n” for the ratio

perimeter of inscribed regular n-gon

perimeter of circumscribed circle
.

(b) Find an expression involving “tan π
n” for the ratio

perimeter of circumscribed regular n-gon

perimeter of inscribed circle
. 4

Problem 211

(a) Find an expression involving “sin 2π
n ” for the ratio

area of inscribed regular n-gon

area of circumscribed circle
.
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(b) Find an expression involving “tan π
n” for the ratio

area of circumscribed regular n-gon

area of inscribed circle
. 4

5.9. Convexity

This short section presents a simple result which to some extent justifies the
assumptions made in the previous section – namely that the perimeter (or
area) of a regular n-gon inscribed in a circle is less than the perimeter (or
area) of the circle, and of the circumscribed regular n-gon.

Problem 212 A convex polygon P1 is drawn in the interior of another
convex polygon P2.

(a) Explain why the area of P1 must be less than the area of P2.

(b) Prove that the perimeter of P1 must be less than the perimeter of P2. 4

5.10. Pythagoras’ Theorem in three dimensions

Pythagoras’ Theorem belongs in 2-dimensions. But does it generalise to
3-dimensions? The usual answer is to interpret the result in terms of
coordinates.

Problem 213

(a) Construct a right angled triangle that explains the standard formula for
the distance from P “ pa, bq to Q “ pd, eq.

(b) Use part (a) to derive the standard formula for the distance from P “

pa, b, cq to Q “ pd, e, fq. 4

This extension of Pythagoras’ Theorem to 3-dimensions is extremely useful,
but not very profound. In contrast, the next result is more intriguing, but
seems to be a complete fluke of limited relevance. In 2D, a right angled
triangle is obtained by

• taking one corner A of a rectangle ABCD, together with its two
neighbours B and D;

• then “cutting off the corner” to get the triangle ABD.

This suggests that a corresponding figure in 3D might be obtained by
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• taking one corner A of a cuboid, together with its three neighbours B, C,
D;

• then cutting off the corner to get a pyramid ABCD, with the right angled
triangle 4ABC as base, and with apex D.

The obvious candidate for the “3D-hypotenuse” is then the sloping face
BCD, and the three right angled triangles 4ABC, 4ACD, 4ADB
presumably correspond to the ‘legs’ (the shorter sides) of the right triangle
in 2D.

Problem 214 You are given a pyramid ABCD with all three faces meeting
at A being right angled triangles with right angles at A. Suppose AB “ b,
AC “ c, AD “ d.

(a) Calculate the areas of 4ABC, 4ACD, 4ADB in terms of b, c, d.

(b) Calculate the area of 4BCD in terms of b, c, d.

(c) Compare your answer in part (b) with the sum of the squares of the three
areas you found in part (a). 4

More significant (e.g. for navigation on the surface of the Earth) and more
interesting than Problem 214 is to ask what form Pythagoras’ Theorem
takes for “lines on a sphere”.

For simplicity we work on a unit sphere. We discovered in the run-up to
Problem 34 that lines, or shortest paths, on a sphere are arcs of great circles.
So, if the triangle 4ABC on the unit sphere is right angled at A, we may
rotate the sphere so that the arc AB lies along the equator and the arc AC
runs up a circle of longitude. It is then clear that, once the lengths c, b of AB
and AC are known, the locations of B and C are essentially determined, and
hence the length of the arc BC on the sphere is determined. So we would
like to have a simple formula that would allow us to calculate the length of
the arc BC directly in terms of c and b.

Problem 215 Given a spherical triangle 4ABC on the unit sphere with
centre O, such that =BAC is a right angle, and such that AB has length c,
and AC has length b.

(a) We have (rightly) referred to b and c as ‘lengths’. But what are they
really?

(b) We want to know how the inputs b and c determine the value of the length
a of the arc BC; that is, we are looking for a function with inputs b and c,
which will allow us to determine the value of the “output” a. Think about
the answer to part (a). What kind of standard functions do we already
know that could have inputs b and c?
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(c) Suppose c “ 0 ‰ b. What should the output a be equal to? (Similarly
if b “ 0 ‰ c.) Which standard function of b and of c does this suggest is
involved?

(d)(i) Suppose =B “ =C “ π
2 , what should the output a be equal to?

(ii) Suppose =B “ π
2 , but =C (and hence c) is unconstrained. The output

a is then determined – but the formula must give this fixed output for
different values of c. What does this suggest as the “simplest possible”
formula for a? 4

The answers to Problem 215 give a pretty good idea what form Pythagoras’
Theorem must take on the unit sphere. The next problem proves this result
as a simple application of the familiar 2D Cosine Rule.

Problem 216 Given any triangle 4ABC on the unit sphere with a right
angle at the point A, we may position the sphere so that A lies on the
equator, with AB along the equator and AC up a circle of longitude. Let O
be the centre of the sphere and let T be the tangent plane to the sphere at
the point A. Extend the radii OB and OC to meet the plane T at B1 and
C 1 respectively.

(a) Calculate the lengths of the line segments AB1 and AC 1, and hence of
B1C 1.

(b) Calculate the lengths of OB1 and OC 1, and then apply the Cosine Rule
to 4B1OC 1 to find an equation linking b and c with =B1OC 1 (“ a). 4

When “solving triangles” on the sphere the same principles apply as in the
plane: right angled triangles hold the key – but Pythagoras’ Theorem and
trig in right angled triangles must be extended to obtain variations of the
Sine Rule and the Cosine Rule for spherical triangles. The corresponding
results on the sphere are both similar to, and intriguingly different from,
those we are used to in the plane. For example, there are two forms of the
Cosine Rule extending the result in Problem 216.

Problem 217 Given a (not necessarily right angled) triangle 4ABC on
the unit sphere, apply the same proof as in Problem 216 to show (with the
usual labelling) that:

cos a “ cos b ¨ cos c` sin b ¨ sin c ¨ cosA 4

The other form of the Cosine Rule is “dual” to that in Problem 217 (with
arcs and angles interchanged, and with an unexpected change of sign) –
namely:

cosA “ ´ cosB ¨ cosC ` sinB ¨ sinC ¨ cos a.
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The next two problems derive a version of the Sine Rule for spherical
triangles.

Problem 218 Let 4ABC be a triangle on the unit sphere with a right
angle at A. Let A1 lie on the arc BA produced, and C 1 lie on the arc BC
produced so that 4A1BC 1 is right angled at A1. With the usual labelling (so
that x denotes the length of the side of a triangle opposite vertex X, with
arc AC “ b, arc BC “ a, arc BC 1 “ a1, and arc A1C 1 “ b1, prove that:

sin b

sin a
“

sin b1

sin a1
. 4

Problem 219 Let 4ABC be a general triangle on the unit sphere with the
usual labelling (so that x denotes the length of the side of a triangle opposite
vertex X, and X is used both to label the vertex and to denote the size of
the angle at X). Prove that:

sin a

sinA
“

sin b

sinB
“

sin c

sinC
. 4

It is natural to ask (cf Problem 32):

“If the three ratios in Problem 219 are all equal, what is it that
they are all equal to?”

The answer may not at first seem quite as nice as in the Euclidean
2-dimensional case: one answer is that they are all equal to

sin a ¨ sin b ¨ sin c

volume of the tetrahedron OABC
.

Notice that this echoes the result in the Euclidean plane, where the three
ratios in the Sine Rule are all equal to 2R, and

2R “
abc

2parea of 4ABCq
.

5.11. Loci and conic sections

This section offers a brief introduction to certain classically important loci
in the plane. The word locus here refers to the set of all points satisfying
some simple geometrical condition; and all the examples in this section are
based on the notion of distance from a point and from a line.

Given a point O and a positive real r, the locus of points at distance r from
O is precisely the circle of radius r with centre O. If r ă 0, then the locus is
empty; while if r “ 0, the locus consists of the point O alone.
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Given a line m and a positive real r, the locus of all points at distance r
from the line m consists of a pair of parallel lines – one either side of the line
m. Given a circle of radius r, and a positive real number d ă r; the locus of
points at distance d from the circle consists of two circles, each concentric
with the given circle (one inside the given circle and one outside). If d ą r,
the locus consists of a single circle outside the given circle.

Given two points A and B, the locus of points which are equidistant from A
and from B is precisely the perpendicular bisector of the line segment AB.
And given two lines m, n the locus of points which are equidistant from
m and from n takes different forms according as m and n are, or are not,
parallel.

• If m and n are parallel, then the locus consists of a single line parallel to
m and n and half way between them.

• If m and n meet at X (say), then the locus consists of the pair of
perpendicular lines through X, that bisect the four angles at X.

Problem 220 Given a point F and a line m, choose m as the x-axis and
the line through F perpendicular to m as the y-axis. Let F have coordinates
p0, 2aq.

(i) Find the equation that defines the locus of points which are equidistant
from F and from m.

(ii) Does the equation suggest a more natural choice of axes – and hence a
simpler equation for the locus? 4

The locus, or curve, in Problem 220 is called a parabola; the point F is called
the focus of the parabola, and the line m is called the directrix. In general,
the ratio

“the distance from X to F” : “the distance from X to m”

is called the eccentricity of the curve. Hence the parabola has eccentricity
e “ 1.

The parabola has many wonderful properties: for example, it is the path
followed by a projectile under the force of gravity; if viewed as the surface
of a mirror, a parabola reflects the sun’s rays (or any parallel beam) to a
single point – the focus F . Since the only variable in the construction of
the parabola is the distance “2a” between the focus and the directrix, we
can scale distances to see that any two different-looking parabolas must in
fact be similar to one another – just as with any two circles. (It is hard
not to infer from the graphs that y “ 10x2 is a “thin” parabola, and that
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y “
`

1
10

˘

x2 is a “fat” parabola. But the first can be rewritten in the form

10y “ p10xq2, and the second can be rewritten in the form
`

y
10

˘

“
`

x
10

˘2
, so

each is a re-scaled version of Y “ X2.)

So far we have considered loci defined by some pair of distances being equal,
or in the ratio 1 : 1. More interesting things begin to happen when we
consider conditions in which two distances are in a fixed ratio other than
1 : 1.

Problem 221

(a) Given two points A, B, with AB “ 6. Find the locus of all points X such
that AX : BX “ 2 : 1.

(b) Given points A, B, with AB “ 2b and a positive real number f . Find the
locus of all points X such that AX : BX “ f : 1. 4

Problem 222

(a) Given points A, B, with AB “ 2c and a real number a ą c. Find the
locus of all points X such that AX `BX “ 2a.

(b) Given a point F and a line m, find the locus of all points X such that the
ratio

distance from X to the point F : distance from X to the line m

is a positive constant e ă 1.

(c) Prove that parts (a) and (b) give different ways of specifying the same
curve, or locus. 4

Problem 223

(a) Given points A, B, with AB “ 2c, and a positive real number a. Find the
locus of all points X such that |AX ´BX| “ 2a.

(b) Given a point F and a line m, find the locus of all points X such that the
ratio

distance from X to the point F : distance from X to the line m

is a constant e ą 1.
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(c) Prove that parts (a) and (b) give different ways of specifying the same
curve, or locus. 4

Problem 221 is sometimes presented in the form of a mild joke.

Two dragons are sleeping, one at A and one at B. Dragon A can
run twice as fast as dragon B. A specimen of homo sapiens is
positioned on the line segment AB, twice as far from A as from B,
and cunningly decides to crawl quietly away, while maintaining the
ratio of his distances from A and from B (so as to make it equally
difficult for either dragon to catch him should they wake).

The locus that emerges generally comes as a surprise: if the man sticks to his
imposed restriction, by moving so that his position X satisfies XA “ 2 ¨XB,
then he follows a circle and lands back where he started! The circle is called
the circle of Apollonius, and the points A and B are sometimes referred to
as its foci.

The locus in Problem 222 is an ellipse – with foci A (or F “ p´ae, 0q)
and B (“ pae, 0q), and with directrix m (the line y “ ´a

e ; the line
y “ a

e is the second directrix of the ellipse). The “focus-focus” description
in part (a) is symmetrical under reflection in both the line AB and the
perpendicular bisector of AB. The “focus-directrix” description in (b) is
clearly symmetrical in the line through F perpendicular to m; but it is a
surprise to find that the equation

x2

a2
`

y2

a2p1´ e2q
“ 1

is also symmetrical under reflection in the y-axis. If we set b2 “ a2p1´ e2q,
the equation takes the form

x2

a2
`
y2

b2
“ 1,

which crosses the x-axis when x “ ˘a, and crosses the y-axis when y “ ˘b.
In its standard form, we usually choose coordinates so that b ă a: the line
segment from p´a, 0q to pa, 0q is then called the major axis, and half of it
(say from p0, 0q to pa, 0q) – of length a – is called the semi-major axis; the
line segment from p0,´bq to p0, bq is called the minor axis, and half of it (say
from p0, 0q to p0, bq) – of length b – is called the semi-minor axis.

The form of the equation shows that an ellipse is obtained from a unit circle
by stretching by a factor “a” in the x-direction, and by a factor “b” in the
y-direction. This implies that the area of an ellipse is equal to πab (since
each small s by s square that arises in the definition of the “area” of the unit
circle gets stretched into an “as by bs rectangle”). However, the equation
tells us nothing about the perimeter of an ellipse. Attempts to pin down the
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perimeter of an ellipse gave rise in the 18th century to the subject of “elliptic
integrals”.

Like parabolas, ellipses arise naturally in many important settings. For
example, Kepler (1571–1630) discovered that the planetary orbits are not
circular (as had previously been believed), but are ellipses – with the Sun
at one focus (a conjecture which was later explained by Isaac Newton
(1642–1727)). Moreover, the tangent to an ellipse at any point X is equally
inclined to the two lines XA and XB, so that a beam emerging from one
focus is reflected at every point of the ellipse so that all the reflected rays
pass through the other focus.

The curve in Problem 223 is a hyperbola – with foci A (or F “ p´ae, 0q)
and B (“ pae, 0q), and with directrix m (the line y “ ´a

e ; the line y “ a
e

is the second directrix of the hyperbola). The “focus-focus” description
in part (a) is symmetrical under reflection in both the line AB and the
perpendicular bisector of AB. The “focus-directrix” description in (b) is
clearly symmetrical in the line through F perpendicular to m; but it is a
surprise to find that the equation

x2

a2
´

y2

a2pe2 ´ 1q
“ 1

is also symmetrical under reflection in the y-axis. Like parabolas and ellipses,
hyperbolas arise naturally in many important settings – in mathematics and
in the natural sciences.

All these loci were introduced and studied by the ancient Greeks without
the benefit of coordinate geometry and equations. They were introduced as
planar cross-sections of a cone – that is, as natural extensions of straight
lines and circles (since the doubly infinite cone is the surface traced out
when one rotates a line about an axis through a point on that line). The
equivalence of the focus-directrix definition in Problems 220, 222, and
223 and cross sections of a cone follows from the next problem. All five
constructions in Problem 224 work with the doubly-infinite cone, which we
may represent as x2`y2 “ przq2 – although this representation is not strictly
needed for the derivations. The surface of the double cone extends to infinity
in both directions, and is obtained by taking the line y “ rz in the yz-plane
(where r ą 0 is constant), and rotating it about the z-axis. Images of this
rotated line are called generators of the cone; and the point they all pass
through (i.e. the origin) is called the apex of the cone.

Problem 224 (Dandelin’s spheres: Dandelin (1794–1847))

(a) Describe the cross-sections obtained by cutting such a double cone by a
horizontal plane (i.e. a plane perpendicular to the z-axis). What if the
cutting plane is the xy-plane?
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Figure 7: Conic sections.

(b)(i) Describe the cross-section obtained by cutting such a cone by a vertical
plane through the origin, or apex.

(ii) What cross-section is obtained if the cutting plane passes through the
apex, but is not vertical?

(c) Give a qualitative description of the curve obtained as a cross-section of
the cone if we cut the cone by a plane which is parallel to a generator:
e.g. the plane y ´ rz “ c.

(i) What happens if c “ 0?

(ii) Now assume the cutting plane is parallel to a generator, but does not
pass through the apex of the cone – so we may assume that the plane
cuts only the bottom half of the cone. Insert a small sphere inside
the bottom half of the cone and above the cutting plane, and inflate
the sphere as much as possible – until it touches the cone around a
horizontal circle (the “contact circle with the cone”), and touches the
plane at a single point F . Let the horizontal plane of the “contact circle
with the cone” meet the cutting plane in the line m. Prove that each
point of the cross-sectional curve is equidistant from the point F and
from the line m – and so is a parabola.

(d)(i) Give a qualitative description of the curve obtained as a cross-section
of the cone if we cut the cone by a plane which is less steep than a
generator, but does not pass through the apex – and so cuts right across
the cone.

(ii) We may assume that the plane cuts only the bottom half of the cone.
Insert a small sphere inside the bottom half of the cone and above the
cutting plane (i.e. on the same side of the cutting plane as the apex of
the cone), and inflate the sphere as much as possible – until it touches
the cone around a horizontal circle, and touches the plane at a single
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point F . Let the horizontal plane of the contact circle meet the cutting
plane in the line m. Prove that, for each point X on the cross-sectional
curve, the ratio

“distance from X to F” : “distance from X to m” “ e : 1

is constant, with e ă 1, and so is an ellipse.

Figure 8: The conic section arising in Problem 224(d).

(e)(i) Give a qualitative description of the curve obtained as a cross-section if
we cut the cone by a plane which is steeper than a generator, but does
not pass through the apex (and hence cuts both halves of the cone)?

(ii) We can be sure that the plane cuts the bottom half of the cone (as
well as the top half). Insert a small sphere inside the bottom half of
the cone and on the same side of the cutting plane as the apex, and
inflate the sphere as much as possible – until it touches the cone around
a horizontal circle, and touches the plane at a single point F . Let the
horizontal plane of the contact circle meet the cutting plane in the line
m. Prove that, for each point X on the cross-sectional curve, the ratio

“distance from X to F” : “distance from X to m” “ e : 1

is constant, with e ą 1, and so is a hyperbola. 4

Problem 224 reveals a remarkable correspondence. It is not hard to show
algebraically that any quadratic equation in two variables x, y represents
either a point, or a pair of crossing (possibly identical) straight lines, or a
parabola, or an ellipse, or a hyperbola: that is, by changing coordinates, the
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quadratic equation can be transformed to one of the standard forms obtained
in this section. Hence, the possible quadratic curves are precisely the same as
the possible cross-sections of a cone. This remarkable equivalence is further
reinforced by the many natural contexts in which these conic sections arise.

5.12. Cubes in higher dimensions

This final section on elementary geometry seeks to explore fresh territory by
going beyond three dimensions. Whenever we try to jump up to a new level,
it can help to first take a step back and ‘take a longer run up’. So please be
patient if we initially take a step or two backwards.

We all know what a unit 3D-cube is. And – going backwards – it is not hard
to guess what is meant by a unit “2D-cube”: a unit 2D-cube is just another
name for a unit square. It is then not hard to notice that a unit 3D-cube
can be constructed from two unit 2D-cubes as follows:

• first position two unit 2D-cubes 1 unit apart in 3D space, with one directly
above the other;

• make sure that each vertex of the lower 2D-cube is directly beneath a
vertex of the upper 2D-cube;

• then join each vertex of the upper 2D-cube to the corresponding vertex
below it.

Perhaps a unit 2D-cube can be constructed in a similar way from “unit
1D-cubes”! This idea suggests that a unit “1D-cube” is just another name
for a unit line segment.

Take the unit 1D-cube to be the line segment from 0 to 1:

• position two such 1D-cubes in 2D (e.g. one joining p0, 0q to p1, 0q, and the
other joining p0, 1q to p1, 1q);

• check that each vertex of the lower 1D-cube is directly beneath a vertex
of the upper 1D-cube;

• then join corresponding pairs of vertices – one from the upper 1D-cube
and one from the lower 1D-cube (p0, 0q to p0, 1q, and p1, 0q to p1, 1q) – to
obtain a unit 2D-cube.

Having taken a step back, we repeat (and reformulate) the previous
construction of a 3D-cube:

• position two such unit 2D-cubes in 3D: with one 2D-cube joining p0, 0, 0q
to p1, 0, 0q, then to p1, 1, 0q, then to p0, 1, 0q and back to p0, 0, 0q, and the
other 2D-cube joining p0, 0, 1q to p1, 0, 1q, then to p1, 1, 1q, then to p0, 1, 1q,
and back to p1, 0, 0q;
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• with one 2D-cube directly above the other,

• then join corresponding pairs of vertices – one from the upper 2D-cube and
one from the lower 2D-cube (p0, 0, 0q to p0, 0, 1q, and p1, 0, 0q to p1, 0, 1q,
and p1, 1, 0q to p1, 1, 1q, and p0, 1, 0q to p0, 1, 1q) – to obtain a unit 3D-cube.

To sum up: a unit cube in 1D, or in 2D, or in 3D:

• has as “vertices” all points whose coordinates are all “0s or 1s” (in 1D, or
2D, or 3D)

• has as “edges” all the unit segments (or unit 1D-cubes) joining vertices
whose coordinates differ in exactly one place

• and a unit 3D-cube has as “faces” all the unit 2D-cubes spanned by vertices
with a constant value (0 or 1) in one of the three coordinate places (that
is, for the unit 3D-cube: the four vertices with x “ 0, or the four vertices
with x “ 1; or the four vertices with y “ 0, or the four vertices with y “ 1;
or the four vertices with z “ 0, or the four vertices with z “ 1).

A 3D-cube is surrounded by six 2D-cubes (or faces), and a 2D-cube is
surrounded by four 1D-cubes (or faces). So it is natural to interpret the
two end vertices of a 1D-cube as being ‘0D-cubes’. We can then see that
a cube in any dimension is made up from cubes of smaller dimensions. We
can also begin to make a reasonable guess as to what we might expect to find
in a ‘4D-cube’.

Problem 225

(a)(i) How many vertices (i.e. 0D-cubes) are there in a 1D-cube?

(ii) How many edges (i.e. 1D-cubes) are there in a 1D-cube?

(b)(i) How many vertices (or 0D-cubes) are there in a 2D-cube?

(ii) How many “faces” (i.e. 2D-cubes) are there in a 2D-cube?

(iii) How many edges (i.e. 1D-cubes) are there in a 2D-cube?

(c)(i) How many vertices (or 0D-cubes) are there in a 3D-cube?

(ii) How many 3D-cubes are there in a 3D-cube?

(iii) How many edges (i.e. 1D-cubes) are there in a 3D-cube?

(iv) How many “faces” (i.e. 2D-cubes) are there in a 3D-cube?

(d)(i) How many vertices (or 0D-cubes) do you expect to find in a 4D-cube?



5.12. Cubes in higher dimensions 229

(ii) How many 4D-cubes do you expect to find in a 4D-cube?

(iii) How many edges (i.e. 1D-cubes) do you expect to find in a 4D-cube?

(iv) How many “faces” (i.e. 2D-cubes) do you expect to find in a 4D-cube?

(v) How many 3D-cubes do you expect to find in a 4D-cube? 4

Problem 226

(a)(i) Sketch a unit 2D-cube as follows. Starting with two unit 1D-cubes –
one directly above the other. Then join up each vertex in the upper
1D-cube to the vertex it corresponds to in the lower 1D-cube (directly
beneath it).

(ii) Label each vertex of your sketch with coordinates px, yq (x, y “ 0 or
1) so that the lower 2D-cube has the equation “y “ 0” and the upper
2D-cube has the equation “y “ 1”.

(b)(i) Sketch a unit 3D-cube, starting with two unit 2D-cubes – one directly
above the other. Then join up each vertex in the upper 2D-cube to the
vertex it corresponds to in the lower 2D-cube (directly beneath it).

(ii) Label each vertex of your sketch with coordinates px, y, zq (where each
x, y, z “ 0 or 1) so that the lower 2D-cube has the equation “z “ 0”
and the upper 2D-cube has the equation “z “ 1”.

(c)(i) Now sketch a unit 4D-cube in the same way – starting with two unit
3D-cubes, one “directly above” the other.

[Hint: In part (b) your sketch was a projection of a 3D-cube onto 2D
paper, and this forced you to represent the lower and upper 2D-cubes
as rhombuses rather than genuine 2D-cubes (unit squares). In part (c)
you face the even more difficult task of representing a 4D-cube on 2D
paper; so you must be prepared for other “distortions”. In particular,
it is almost impossible to see what is going on if you try to physically
position one 3D-cube “directly above” the other on 2D paper. So start
with the “upper” unit 3D-cube towards the top right of your paper,
and then position the “lower” unit 3D-cube not directly below it on the
paper, but below and slightly to the left, before pairing off and joining
up each vertex of the upper 3D-cube with the corresponding vertex in
the lower 3D-cube.]

(ii) Label each vertex of your sketch with coordinates pw, x, y, zq (where
each w, x, y, z “ 0 or 1) so that the lower 3D-cube has the equation
“z “ 0” and the upper 3D-cube has the equation “z “ 1”. 4

Problem 227 The only possible path along the edges of a 2D-cube uses
each vertex once and returns to the start after visiting all four vertices.
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(a)(i) Draw a path along the edges of a 3D-cube that visits each vertex exactly
once and returns to the start.

(ii) Look at the sequence of coordinate triples as you follow your path.
What do you notice?

(b)(i) Draw a path along the edges of a 4D-cube that visits each vertex exactly
once and returns to the start.

(ii) Look at the sequence of coordinate 4-tuples as you follow your path.
What do you notice? 4

5.13. Chapter 5: Comments and solutions

137. Note: The spirit of constructions restricts us to:

• drawing the line joining two known points

• drawing the circle with centre a known point and passing through a known point.

The whole thrust of this first problem is to find some way to “jump” from A (or
B) to C. So the problem leaves us with very little choice; AB is given, and A and
B are more-or-less indistinguishable, so there are only two possible ‘first moves’ –
both of which work with the line segment AC (or BC).

Join AC.

Then construct the point X such that 4ACX is equilateral (i.e. use Euclid’s
Elements, Book I, Proposition 1). Construct the circle with centre A which passes
through B; let this circle meet the line AX at the point Y , where either

(i) Y lies on the segment AX (if AB ď AC), or

(ii) Y lies on AX produced (i.e. beyond X, if AB ą AC).

In each case, AY “ AB. Finally construct the circle with centre X which passes
through Y . In case (i), let the circle meet the line segment XC at D; in case (ii),
let the circle meet CX produced (beyond X) at D.

In case (i), CX “ CD `DX; therefore

CD “ CX ´DX

“ AX ´ Y X

“ AY “ AB.

In case (ii),

CD “ CX `XD

“ AX `XY

“ AY “ AB.

QED
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138.

=AXC “ =AXB ´=CXB

“ =CXD ´=CXB psince the two straight angles

=AXB and =CXD are equalq

“ =BXD.

QED
139.

AM “ AM
MB “MC (by construction of the midpoint M)
BA “ CA (given).
6 4AMB ” 4AMC (by SSS-congruence)
6 =AMB “ =AMC, so each angle is exactly half the straight angle =BMC.
Hence AM is perpendicular to BC. QED

140. Let ABCDEF be a regular hexagon with sides of length 1. Then 4ABC
(formed by the first three vertices) satisfies the given constraints, with =ABC “
120˝.

Let 4B1C 1D be an equilateral triangle with sides of length 2, and with A1

the midpoint of B1D. Then 4A1B1C 1 satisfies the given constraints with angle
=A1B1C 1 “ 60˝.

141.

(i) Join CO. Then 4ACO is isosceles (since OA “ OC) and 4BCO is isosceles
(since OB “ OC).
Hence =OAC “ =OCA “ x (say), and =OBC “ =OCB “ y (say).
So =C “ x` y (and =A`=B `=C “ x` px` yq ` y “ 2px` yq). QED

(ii) If =A ` =B ` =C “ 2px ` yq is equal to a straight angle, then =C “ x ` y is
half a straight angle, and hence a right angle. QED

142.

(i) Draw the circle with centre A and passing through B, and the circle with centre
B passing through A. Let these two circles meet at C and D.

Wherever the midpoint M of AB may be, we know from Euclid Book I,
Proposition 1 and Problem 139:

that 4ABC is equilateral, and that CM is perpendicular to AB, and
that 4ABD is equilateral, and that DM is perpendicular to AB.

Hence CMD is a straight line.

So if we join CD, then this line cuts AB at its midpoint M . QED
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(ii) We may suppose that BA ď BC.

Then the circle with centre B, passing through A meets BC internally at A1

(say).

Let the circle with centre A and passing through B meet the circle with centre
A1 and passing through B at the point D.

Claim BD bisects =ABC.
Proof

BA “ BA1 (radii of the same circle with centre B)

AD “ AB (radii of the same circle with centre A)

“ A1B “ A1D (radii of same circle with centre A1)

BD “ BD

Hence 4BAD ” 4BA1D (by SSS-congruence).
6 =ABD “ =A1BD. QED

(iii) Suppose first that PA “ PB. Then the circle with centre P and passing through
A meets the line AB again at B. If we construct the midpoint M of AB as in
part (i), then PM will be perpendicular to AB.

Now suppose that one of PA and PB is longer than the other. We may suppose
that PA ą PB, so B lies inside the circle with centre P and passing through A.
Hence this circle meets the line AB again at A1 where B lies between A and A1.

If we now construct the midpoint M of AA1 as in part (i), then PM will be
perpendicular to AA1, and hence to AB. QED

143. Let M be the midpoint of AB.

(a) Let X lie on the perpendicular bisector of AB.

6 4XMA ” 4XMB (by SAS congruence, since XM “ XM , =XMA “

=XMB, MA “MB)

6 XA “ XB.

(b) If X is equidistant from A and from B, then 4XMA ” 4XMB (by
SSS-congruence, since XM “ XM , MA “MB, AX “ BX).

6 =XMA “ =XMB, so each must be exactly half a straight angle.

6 X lies on the perpendicular bisector of AB. QED

144. Let X lie on the plane perpendicular to NS, through the midpoint M .
6 4XMN ” 4XMS (by SAS congruence, since XM “ XM , =XMN “

=XMS, MN “MS)
6 XN “ XS.

Let X be equidistant from N and from S, then 4XMN ” 4XMS (by
SSS-congruence, since XM “ XM , MN “MS, NX “ SX).

6 =XMN “ =XMS, so each must be exactly half a straight angle.

6 X lies on the perpendicular bisector of NS. QED
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145. Let M be the midpoint of AC. Join BM and extend the line beyond M
to the point D such that MB “ MD. Join CD. Then 4AMB ” 4CMD (by
SAS-congruence, since

AM “ CM (by construction of the midpoint M)
=AMB “ =CMD (vertically opposite angles)
MB “MD (by construction)).

6 =DCM “ =BAM .
Now

=ACX “ =DCM `=DCX

ą =DCM

“ =BAM

“ =A.

Hence =ACX ą =A.

Similarly, we can extend AC beyond C to a point Y . Let N be the midpoint of
BC. Join AN and extend the line beyond N to the point E such that NA “ NE.
Join CE.
Then 4BNA ” 4CNE (again by SAS-congruence).
6 =BCY ą =BCE “ =CBA “ =B. QED

146.

(a) Suppose that AB ą AC.
Let the circle with centre A, passing through C, meet AB (internally) at X.
Then 4ACX is isosceles, so =ACX “ =AXC.
By Problem 145, =AXC ą =ABC.
6 =ACB pą =ACX “ =AXCq ą =ABC. QED

(b) Suppose the conclusion does not hold. Then either

(i) AB “ AC, or

(ii) AC ą AB.

(i) If AB “ AC, then 4ABC is isosceles, so =ACB “ =ABC – contrary to
assumption.

(ii) If AC ą AB, then =ABC ą =ACB (by part (a)) – again contrary to
assumption.

Hence, if =ACB ą =ABC, it follows that AB ą AC. QED

(c) Extend AB beyond B to the point D, such that BD “ BC.
Then 4BDC is isosceles with apex B, so =BDC “ =BCD.
Now

=ACD “ =ACB `=BCD ą =BCD “ =BDC.
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Hence, by part (b), AD ą AC.
By construction,

AD “ AB `BD “ AB `BC,

so AB `BC ą AC. QED

147. Suppose =C “ =A`=B, but that C does not lie on the circle with diameter
AB. Then C lies either inside, or outside the circle. Let O be the midpoint of AB.

(i) If C lies outside the circle, then OC ą OA “ OB.
6 =OAC ą =OCA and =OBC ą =OCB (by Problem 146(a)).
6 =C “ =OCA`=OCB ă =A`=B – contrary to assumption.
Hence C does not lie outside the circle.

(ii) If C lies inside the circle, then OC ă OA “ OB.
6 =OAC ă =OCA and =OBC ă =OCB (by Problem 146(a)).
6 =C “ =OCA`=OCB ą =A`=B – contrary to assumption.
Hence C does not lie inside the circle.
Hence C lies on the circle with diameter AB. QED

148. Suppose, to the contrary, that OP is not perpendicular to the tangent at P .

Drop a perpendicular from O to the tangent at P to meet the tangent at Q. Extend
PQ beyond Q to some point X. Then =OQP and =OQX are both right angles.

Since Q (‰ P ) lies on the tangent, Q lies outside the circle, so OQ ą OP . Hence
(by Problem 146(a)) =OPQ ą =OQP “ =OQX – contrary to the fact that
=OQX ą =OPQ (by Problem 145). QED

149. Let Q lie on the line m such that PQ is perpendicular to m.
Let X be any other point on the line m, and let Y be a point on m such that Q
lies between X and Y .
Then =PQX and =PQY are both right angles.
Suppose that PX ă PQ.
Then =PQY “ =PQX ă =PXQ (by Problem 146(a)), which contradicts
Problem 145 (since =PQY is an exterior angle of 4PQX).
Hence PX ě PQ as required. QED

150. =A ` =B ` =C, and =XCA ` =C are both equal to a straight angle. So
=A`=B “ =XCA.

151. Join OA, OB, OC. Since these radii are all equal, this produces three
isosceles triangles. There are five cases to consider.

(i) Suppose first that O lies on AB. Then AB is a diameter, so =ACB is a right
angle (by Problem 141), =AOB is a straight angle, and the result holds.
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(ii) Suppose O lies on AC, or on BC. These are similar, so we may assume that O
lies on AC.
Then 4OBC is isosceles, so =OBC “ =OCB.
=AOB is the exterior angle of 4OBC, so

=AOB “ =OBC `=OCB “ 2 ¨=ACB

(by Problem 150).

(iii) Suppose O lies inside 4ABC.
4OAB, 4OBC, 4OCA are isosceles, so let =OAB “ =OBA “ x, =OBC “
=OCB “ y, =OCA “ =OAC “ z.
Then =ACB “ y ` z, =ABC “ x` y, =BAC “ x` z.
The three angles of 4ABC add to a straight angle, so 2px ` y ` zq equals a
straight angle.
Hence, in 4OBA,

=AOB “ 2px` y ` zq ´ p=OAB `=OBAq “ 2py ` zq “ 2 ¨=ACB.

(iv) Suppose O lies outside 4ABC with O and B on opposite sides of AC.
4OAB, 4OBC, 4OCA are isosceles, so let =OAB “ =OBA “ x, =OBC “
=OCB “ y, =OCA “ =OAC “ z.
Then =ACB “ y ´ z, =ABC “ x` y, =BAC “ x´ z.
The three angles of 4ABC add to a straight angle, so 2x ` 2y ´ 2z equals a
straight angle.
Hence

2x` 2y ´ 2z “ =AOB `=OAB `=OBA “ =AOB ` 2x,

so =AOB “ 2y ´ 2z “ 2 ¨=ACB.

(v) Suppose O lies outside 4ABC with O and B on the same side of AC.
4OAB, 4OBC, 4OCA are isosceles, so let =OAB “ =OBA “ x, =OBC “
=OCB “ y, =OCA “ =OAC “ z.
Then =ACB “ y ` z, =ABC “ y ´ x, =BAC “ z ´ x.
The three angles of ABC add to a straight angle, so 2y`2z´2x equals a straight
angle.
Since C lies on the minor arc relative to the chord AB, we need to interpret“the
angle subtended by the chord AB at the centre O” as the reflex angle outside
the triangle 4AOB – which is equal to “2x more than a straight angle”, so
=AOB “ 2y ` 2z “ 2 ¨=ACB. QED

152. The chord AB subtends angles at C and at D on the same arc. Similarly
BC subtends angles at A and at D on the same arc. Hence (by Problem 151)
=ACB “ =ADB, and =BAC “ =BDC.
Hence

=ADC “ =ADB `=BDC “ =ACB `=BAC,

so =ADC `=ABC equals the sum of the three angles in 4ABC. QED
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153. Let O be the circumcentre of 4ABC, and let =XAB “ x.
Then =XAO is a right angle, and 4OAB is isosceles. There are two cases.

(i) If X and O lie on opposite sides of AB, then =OBA “ =OAB “ 90˝ ´ x.
6 =AOB “ 2x.
6 =ACB “ x “ =XAB.

(ii) If X and O lie on the same side of AB, then Y and O lie on opposite sides of
AB and of AC. Hence we can apply case (i) (with Y in place of X, AC in place
of AB, =Y AC in place of =XAB, and =ABC in place of =ACB) to conclude
that =Y AC “ =ABC. Hence

=XAB `=BAC `=Y AC “ =XAB `=BAC `=ABC

are both straight angles, so =XAB “ =ACB (since the three angles of 4ABC
also add to a straight angle). QED

154.

(a)(i) Extend AD to meet the circumcircle at X. Then (applying Problem 145 to
4DXB), the exterior angle =ADB ą =DXB “ =AXB “ =ACB.

(ii) We are told that the points C, Dlie “on the same side of the line AB”.
This“side” of the line AB (or “half-plane”) is split into three parts by the
half-lines“ACproduced beyond C” and “BCproduced beyond C”.There are
two very different possibilities.
Suppose first that Dlies in one of the two overlapping wedge-shaped
regions“between ABproduced andACproduced” or “between BAproduced
andBCproduced”. Then either DAorDBcuts the arc ABat a point X(say),
and=ACB “ =AXB ą =ADB (by Problem 145applied to 4AXDor to
4BXD).
The only alternative is that Dlies in the wedge shaped region outside the
circleat the point C,lying “betweenACproduced and BCproduced”. Then C
liesinside 4ADB, so C lies inside the circumcircle of 4ADB. Hencepart (i)
implies that =ACB ă =ADBas required. QED

(b) If D does not lie on the circumcircle of 4ABC, then it lies either inside, or
outside the circle – in which case =ADB ‰ =ACB (by part (a)).

(c) =D is less than a straight angle, so D must lie outside 4ABC. Moreover, B,
D lie on opposite sides of the line AC (since the edges BC, DA do not cross
internally, and neither do the edges CD,AB). Consider the circumcircle of
4ABC, and let X be any point on the circle such that X and D lie on the
same side of the line AC. Then ABCX is a cyclic quadrilateral, so =ABC and
=CXA are supplementary. Hence =CXA “ =CDA “ =D. But then D lies on
the circle (by part (b)).

155. 4OPQ ” 4OP 1Q (by RHS-congruence: =OPQ “ =OP 1Q are both right
angles, OP “ OP 1, OQ “ OQ)
6 QP “ QP 1, and =QOP “ =QOP 1. QED
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156.

(a) Let X be any point on the bisector of =ABC. Drop the perpendiculars XY
from X to AB and XZ from X to CB. Then: =XY B “ =XZB are both
right angles by construction; and =XBY “ =XBZ since X lies on the bisector
of =Y BZ; hence =BXY “ =BXZ (since the three angles in each triangle
have the same sum; so as soon as two of the angles are equal in pairs, the
third pair must also be equal). Hence 4BXY ” 4BXZ (by ASA-congruence:
=Y BX “ =ZBX, BX “ BX, =BXY “ =BXZ.)
6 XY “ XZ. QED

(b) Suppose X is equidistant from m and from n. Drop the perpendiculars XY
from X to m, and XZ from X to n.
Then 4BXY ” 4BXZ (by RHS-congruence:

=BYX “ =BZX are both right angles
XY “ XZ, since we are assuming X is equidistant from m and from n
BX “ BX).

Hence =XBY “ =XBZ, so X lies on the bisector of =Y BZ. QED

157.

(i) Join AC. Then 4ABC ” 4CDA by ASA-congruence:

=BAC “ =DCA (alternate angles, since AB ‖ DC)
AC “ CA
=ACB “ =CAD (alternate angles, since CB ‖ DAq.

In particular, 4ABC and 4CDA must have equal area, and so each is exactly
half of ABCD. QED

Note: Once we prove (Problem 161 below) that a parallelogram has the same
area as the rectangle on the same base and lying between the same pair of
parallels (whose area is equal to “base ˆ height”), the result in part (i) will
immediately translate into the familiar formula for the area of the triangle

1

2
pbaseˆ heightq.

(ii) 4ABC ” 4CDA by part (i). Hence AB “ CD, BC “ DA; and
=B “ =ABC “ =CDA “ =D.
To show that =A “ =C, we can either copy part (i) after joining BD to
prove that 4BCD ” 4DAB, or we can use part (i) directly to note that
=A “ =BAC `=DAC “ =DCA`=BCA “ =C. QED

(iii) 4AXB ” 4CXD by ASA-congruence:

=XAB “ =XCD (alternate angles, since AB ‖ DC)
AB “ CD (by part (ii))
=XBA “ =XDC (alternate angles, since AB ‖ DC).
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Hence XA (in 4AXB) “ XC (in 4CXD), and XB (in 4AXB) “ XD (in
4CXD). QED

158. We may assume that m cuts the opposite sides AB at Y and DC at Z.
4XY B ” 4XZD by ASA-congruence:

=Y XB “ =ZXD (vertically opposite angles)
XB “ XD (by Problem 157(iii))
=XBY “ =XDZ (alternate angles).

Therefore

areapY ZCBq “ areap4BCDq ´ areap4XZDq ` areap4XY Bq
“ areap4BCDq

“
1

2
areapABCDq.

QED

159.

(a) Join AC. Then 4ABC ” 4CDA by SAS-congruence:

BA “ DC (given)
=BAC “ =DCA (alternate angles, since AB ‖ DC)
AC “ CA.

Hence =BCA “ =DAC, so AD ‖ BC as required. QED

(b) Join AC. Then 4ABC ” 4CDA by SSS-congruence:

AB “ CD (given)
BC “ DA (given)
CA “ AC.

Hence =BAC “ =DCA, so AB ‖ DC; and =BCA “ =DAC, so BC ‖ AD.

QED

(c) =A ` =B ` =C ` =D “ 2=A ` 2=B “ 2=A ` 2=D are each equal to two
straight angles.
6 =A ` =B is equal to a straight angle, so AD ‖ BC; and =A ` =D is equal
to a straight angle, so AB ‖ DC. QED

Note: The fact that the angles in a quadrilateral add to two straight angles is
proved in the next chapter. However, if preferred, it can be proved here directly.
If we imagine pins located at A, B, C, D, then a string tied around the four points
defines their “convex hull” – which is either a 4-gon (if the string touches all four
pins), or a 3-gon (if one vertex is inside the triangle formed by the other three).
In the first case, either diagonal (AC or BD) will split the quadrilateral internally
into two triangles; in the second case, one of the three ‘edges’ joining vertices of
the convex hull to the internal vertex cannot be an edge of the quadrilateral, and
so must be a diagonal, which splits the quadrilateral internally into two triangles.
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160. AM “MD (by construction of M as the midpoint), and BN “ NC.
6 AM “ BN (since AD “ BC by Problem 157(ii)).
6 ABNM is a parallelogram (by Problem 159(a)), so MN ‖ AB.
Let AC cross MN at Y .
Then 4AYM ” 4CY N (by ASA-congruence, since

=Y AM “ =Y CN (alternate angles, since AD ‖ BC)
AM “ CN
=AMY “ =CNY (alternate angles, since AD ‖ BC).

Hence AY “ CY , so Y is the midpoint of AC – the centre of the parallelogram
(where the two diagonals meet (by Problem 157(iii))). QED

161.

Note: In the easy case, where the perpendicular from A to the line DC meets the
side DC internally at X, it is natural to see the parallelogram ABCD as the “sum”
of a trapezium ABCX and a right angled triangle 4AXD. If the perpendicular
from B to DC meets DC at Y , then 4AXD ” 4BY C. Hence we can rearrange
the two parts of the parallelogram DCBA to form a rectangle XY BA.

However, a general proof cannot assume that the perpendicular from A (or from
B) to DC meets DC internally. Hence we are obliged to think of the parallelogram
in terms of differences. This is a strategy that is often useful, but which can be
surprisingly elusive.

Draw the perpendiculars from A and B to the line CD, and from C and D to the
line AB. Choose the two perpendiculars which, together with the lines AB and CD
define a rectangle that completely contains the parallelogram ABCD (that is, if
AB runs from left to right, take the left-most, and the right-most perpendiculars).
These will be either the perpendiculars from B and from D, or the perpendiculars
from A and from C (depending on which way the sides AC and BD slope).

Suppose the chosen perpendiculars are the one from B – meeting the line DC at
P , and the one from D – meeting the line AB at Q.

Then BP ‖ QD (by Problem 159(c)), so BQDP is a parallelogram with a right
angle – and hence a rectangle. Hence BQ “ PD, and BP “ QD (by Problem
157(ii)).

4QAD ” 4PCB (by RHS-congruence), so each is equal to half the rectangle on
base PC and height PB. Hence

areapABCDq “ areaprectangle BQDP q

´ areaprectangle on base PC with height PBq

“ areaprectangle on base CD with height DQq.

QED
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162.

(a) ABCB1 is a parallelogram, so AB1 ‖ CB and AB1 “ BC.
Similarly, BCAC 1 is a parallelogram, so AC 1 ‖ CB and AC 1 “ CB.
Hence B1A “ AC 1, so A is the midpoint of B1C 1.

Similarly B is the midpoint of C 1A1, and C is the midpoint of A1B1.

(b) Let H be the circumcentre of 4A1B1C 1 – that is, the common point of the
perpendicular bisectors of A1B1, B1C 1, and C 1A1. Then H is a common point of
the three perpendiculars from A to BC, from B to CA, and from C to AB.

163. Consider any path from H to V . Suppose this reaches the river at X. The
shortest route from H to X is a straight line segment; and the shortest route from
X to V is a straight line segment.

If we reflect the point H in the line of the river, we get a point H 1, where HH 1 is
perpendicular to the river and meets the river at Y (say).

Then 4HXY ” 4H 1XY (by SAS-congruence, since HY “ H 1Y , =HYX “

=H 1Y X, and Y X “ Y X). Hence HX “ H 1X, so the distance from H to V via
X is equal to HX `XV “ H 1X `XV , and this is shortest when H 1, X, and V
are collinear. (So to find the shortest route, reflect H in the line of the river to H 1,
then draw H 1V to cross the line of the river at X, and travel from H to V via X.)

164.

(a) Let 4PQR be any triangle inscribed in 4ABC, with P on BC, Q on CA, R
on AB (not necessarily the orthic triangle). Let P 1 be the reflection of P in the
side AC, and let P 2 be the reflection of P in the side AB. Then PQ “ P 1Q,
and PR “ P 2R (as in Problem 163).
6 PQ`QR`RP “ P 1Q`QR`RP 2 .

Each choice of the point P on AB determines the positions of P 1 and P 2. Hence
the shortest possible perimeter of 4PQR arises when P 1QRP 2 is a straight line.
That is, given a choice of the point P , choose Q and R by:

– constructing the reflections P 1 of P in AC, and P 2 of P in AB;

– join P 1P 2 and let Q, R be the points where this line segment crosses AC, AB
respectively.

It remains to decide how to choose P on BC so that P 1P 2 is as short as possible.
The key here is to notice that A lies on both AC and on AB.
6 AP “ AP 1, and AP “ AP 2, so 4AP 1P 2 is isosceles.
Also =PAC “ =P 1AC, and =PAB “ =P 2AB.
6 =P 1AP 2 “ 2 ¨=A.

Hence, for each position of the point P , 4AP 1P 2 is isosceles with apex angle
equal to 2 ¨=A. Any two such triangles are similar (by SAS-similarity).

Hence the triangle 4AP 1P 2 with the shortest “base” P 1P 2 occurs when the legs
AP 1 and AP 2 are as short as possible. But AP “ AP 1 “ AP 2, so this occurs
when AP is as short as possible – namely when AP is perpendicular to BC.
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Since the same reasoning applies to Q and to R, it follows that the required
triangle 4PQR must be the orthic triangle of 4ABC. QED

(b) Let 4PQR be the orthic triangle of 4ABC, with P on BC, Q on CA, R on
AB. Let H be the orthocenter of 4ABC.

=BPH and =BRH are both right angles, so add to a straight angle. Hence
(by Problem 154(c)), BPHR is a cyclic quadrilateral. Similarly CPHQ and
AQHR are cyclic quadrilaterals.
In the circumcircle of CPHQ, we see that the initial “angle of incidence”
=CQP “ =CHP . Also =CHP “ =AHR (vertically opposite angles); and
in the circumcircle of AQHR, =AHR “ =AQR.
Hence =CQP “ =AQR, so a ray of light which traverses PQ will reflect at Q
along the line QR. Similarly one can show that =ARQ “ =BRP , so that the
ray will then reflect at R along RP ; and =BPR “ =CPQ, so the ray will then
reflect at P along PQ. QED

165.

(a)(i) Triangles 4ABL and 4ACL have equal bases BL “ CL, and the same
apex A – so lie between the same parallels. Hence they have equal area (by
Problems 157 and 161).

Similarly, 4GBL and 4GCL have equal bases BL “ CL, and the same apex
G – so have equal area.

Hence the differences 4ABG “ 4ABL ´ 4GBL and 4ACG “ 4ACL ´
4GCL have equal area.

(ii) [Repeat the solution for part (i) replacing A, B, C, L, G by B, C, A, M , G.]

(b) 4ABL and 4ACL have equal area (as in (a)(i)). Similarly 4GBL and 4GCL
have the same area – say x (since BL “ CL). Hence 4ABG and 4ACG have
equal area.

In the same way4BCM and4BAM have equal area; and4GCM and4GAM
have the same area – say y (since CM “ AM). Hence 4BCG and 4BAG have
equal area.

But then 4ABG “ 4ACG “ 4BCG and 4ACG “ 4AMG `4CMG “ 2y,
4BCG “ 4BLG `4CLG “ 2x. Hence x “ y, so 4AMG, 4CMG, 4CLG,
4BLG all have the same area x, and 4ABG has area 2x.

The segment GN divides 4ABG into two equal parts (4ANG and 4BNG),
so each part has area x.
Hence 4CAG`4ANG has the same area (3x) as 4CAN . Hence =CGN is a
straight angle, and the three medians AL, BM , CN all pass through the point
G.

Note: At first sight, the ‘proof’ of the result in (b) using vectors seems considerably
easier. (If A, B, C have position vectors a, b, c respectively, then L has the position
vector 1

2
pb` cq, and M has position vector 1

2
pc` aq, and it is easy to see that AL

and BM meet at G with position vector 1
3
pa`b`cq. One can then check directly
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that G lies on CN , or notice that the symmetry of the expression 1
3
pa ` b ` cq

guarantees that G is also the point where BM and CN meet.

The inscrutable aspect of this ‘proof’ lies in the fact that all the geometry has been
silently hidden in the algebraic assumptions which underpin the unstated axioms
of the 2-dimensional vector space, and the underlying field of real numbers. Hence,
although the vector ‘proof’ may seem simpler, the two different approaches cannot
really be compared.

166.

(a) AN “ BN (by construction of N as the midpoint of AB)
=ANM “ =BNM 1 (vertically opposite angles)
NM “ NM 1 (by construction).
6 4ANM ” 4BNM 1 (by SAS-congruence). QED

(b) BM 1
“ AM “ CM .

=NAM “ =NBM 1 (since 4ANM ” 4BNM 1)
6 BM 1 ‖MA (i.e. BM 1 ‖ CM). QED

(c) BM 1MC is a quadrilateral with opposite sides CM , BM 1 equal and parallel.
6 BM 1MC is a (by Problem 158(a)). QED

167. Since A and B are interchangeable in the result to be proved, we may assume
that A is the point on the secant that lies between P and B.

In order to make deductions, we have to create triangles – so join AT and BT .
This creates two triangles: 4PAT and 4PTB, in which we see that:
=TPA “ =BPT ,
=PTA “ =PBT (by Problem 153),
6 =PAT “ =PTB (since the three angles in each triangle add to a straight angle).
Hence 4PAT „ 4PTB (by AAA-similarity).
6 PT : PB “ PA : PT , or PAˆ PB “ PT 2. QED

168. Since A, B are interchangeable in the result to be proved, and C, D are
interchangeable, we may assume that A lies between P and B, and that C lies
between P and D.

(i) Let the tangent from P to the circle touch the circle at T .
Then Problem 167 guarantees that PAˆ PB “ PT 2.
Replacing the secant PAB by PCD shows similarly that PC ˆ PD “ PT 2.
Hence PAˆ PB “ PC ˆ PD. QED

(ii) Note: The first proof is so easy, one may wonder why anyone would ask for
a second proof. The reason lies in Problem 169 – which looks very much like
Problem 168, but with P inside the circle. Hence, when we come to the next
problem, the easy approach in (i) will not be available, so it is worth looking for
another proof of 168 which has a chance of generalizing.

Notice that AC is a chord which links the two secants PAB and PCD.
So join AD and CB.
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Then 4PAD „ 4PCB (by AAA-similarity: since =APD “ =CPB, and
=PDA “ =PBCq.
6 PA : PC “ PD : PB, or PAˆ PB “ PC ˆ PD. QED

169. Join AD and CB.
Then 4PAD „ 4PCB (by AAA-similarity: since
=APD “ =CPB (vertically opposite angles)
=PDA “ =PBC (angles subtended by chord AC on the same arc)
=PAD “ =PCB (angles subtended by a chord BD on the same arc)).
6 PA : PC “ PD : PB, or PAˆ PB “ PC ˆ PD. QED

170.

(a) If a “ b, then ABCD is a parallelogram (by Problem 159(a)).
6 AD “ BC (by Problem 157(ii)).
6 AM “ BN , so ABNM is a parallelogram (by Problem 159(a)).
6 MN “ AB has length a, and MN ‖ AB (by Problem 160).

If a ‰ b, then a ă b, or b ă a. We may assume that a ă b.
Construct the line through B parallel to AD, and let this line meet DC at Q.
Then ABQD is a parallelogram, so DQ “ AB, and AD “ BQ. Hence QC has
length b´ a.
Construct the line through M parallel to QC (and hence parallel to BA), and
let this meet BQ at P , and BC at N 1.
Then ABPM and MPQD are both parallelograms.
6 MP “ AB has length a, and

BP “ AM “MD “ PQ.

Now 4BPN 1 „ 4BQC (by AAA-similarity, since PN 1 ‖ QC); so

BP : BQ “ BN 1 : BC “ 1 : 2.

Hence N 1 “ N is the midpoint of BC, MN ‖ BC, and MN has length

a`
b´ a

2
“
a` b

2
.

(b) Suppose first that a “ b. Then ABCD is a parallelogram (by Problem 159(a)),
so the area of ABCD is given by a ˆ d (“(length of base) ˆ height”). (by
Problem 161). Hence we may suppose that a ă b.

Solution 1: Extend AB beyond B to a point X such that BX “ DC (so AX
has length a` b).
Extend DC beyond C to a point Y such that CY “ AB (so DY has length
a` b).
Clearly ABCD and Y CBX are congruent, so each has area one half of
area(AXYD).
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Now AX ‖ DY , and AX “ DY , so AXYD is a parallelogram (by Problem
159(a)).
Hence AXYD has area “(length of base) ˆ height” (by Problem 161), so ABCD
has area a`b

2
ˆ d.

Solution 2: [We give a second solution as preparation for Problem 171.]

Now a ă b implies that =BAD `=ABC is greater than a straight angle.

[Proof. The line through B parallel to AD meets DC at Q, and ABQD
is a parallelogram.
Hence DQ “ AB, so Q lies between D and C, and

=ABC “ =ABQ`=QBC ą =ABQ.

6 =BAD ` =ABC ą =BAD ` =ABQ, which is equal to a straight
angle.]

So if we extend DA beyond A, and CB beyond B, the lines meet at X, where X,
D are on opposite sides of AB. Then 4XAB „ 4XDC (by AAA-similarity),
whence corresponding lengths in the two triangles are in the ratio AB : DC “
a : b. In particular, if the perpendicular from X to AB has length h, then
h
h`d

“ a
b
, so hpb´ aq “ ad.

Now

areapABCDq “ areap4XDCq ´ areap4XABq

“
1

2
bph` dq ´

1

2
ah

“
1

2
bd`

1

2
hpb´ aq

“
1

2
bd`

1

2
ad

“

ˆ

a` b

2

˙

d.

171. Note: The volume of a pyramid or cone is equal to

1

3
ˆ (area of base) ˆ height.

There is no elementary general proof of this fact. The initial coefficient of 1
3

arises because we are “adding up”, or integrating, cross-sections parallel to the
base, whose area involves a square x2, where x is the distance from the apex (just
as the coefficient 1

2
in the formula for the area of a triangle arises because we are

integrating linear cross-sections whose size is a multiple of x – the distance from the
apex). Special cases of this formula can be checked – for example, by noticing that
a cube ABCDEFGH of side s, with base ABCD, and upper surface EFGH, with
E above D, F above A, and so on, can be dissected into three identical pyramids
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– all with apex E: one with base ABCD, one with base BCHG, and one with
base ABGF . Hence each pyramid has volume 1

3
s3, which may be interpreted as

1

3
ˆ parea of base “ s2q ˆ pheight “ sq.

To obtain the frustum of height d, a pyramid with height h (say) is cut off a
pyramid with height h` d.

6 volumepfrustumq “

„

1

3
ˆ b2 ˆ ph` dq



´

„

1

3
ˆ a2 ˆ h



“

„

1

3
ˆ b2 ˆ d



`

„

1

3
ˆ pb2 ´ a2q ˆ h



.

Let N be the midpoint of BC, and let the line AN meet the upper square face of
the frustum at M .
Let the perpendicular from the apex A to the base BCDE meet the upper face
of the frustum at Y and the base BCDE at Z.
Then 4AYM „ 4AZN (by AAA-similarity), so AY : AZ “ YM : ZN .
6 h

h`d
“ a

b
, so hpb´ aq “ ad.

6 volumepfrustumq “
1

3
b2d`

1

3

`

b2 ´ a2
˘

h

“
1

3
b2d`

1

3
pb` aqad

“
1

3

`

b2 ` ab` a2
˘

d.

172. Construct the line through A which is parallel to A1B1, and let it meet the
line BB1 at P .
Similarly, construct the line through B which is parallel to B1C 1 and let it meet
the line CC 1 at Q.
Then 4ABP „ 4BCQ (by AAA-similarity), so AB : BC “ AP : BQ.
Now AA1B1P is a parallelogram, so AP “ A1B1, and BB1C 1Q is a parallelogram,
so BQ “ B1C 1.
6 AB : BC “ A1B1 : B1C 1. QED

173.

(a) Suppose AB has length a and CD has length b. Problem 137 allows us to
construct a point X such that AX “ CD, so AX has length b. Now construct
the point Y where the circle with centre A and radius AX meets BA produced
(beyond A). Then Y B has length a` b.

If a ą b, let Z be the point where the circle with centre A and passing through
X meets the segment AB internally Then ZB has length a´ b.
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(b) Use Problem 137 to construct a point U (not on the line CD) such that DU “
XY , and a point V on DU (possibly extended beyond U) such that DV “ AB.
Hence DU has length 1 and DV has length a.

Construct the line through V parallel to UC and let it meet the line DC at W .
Then 4DVW „ 4DUC, with scale factor DW : DC “ DV : DU “ a : 1.
Hence DW has length ab.

To construct a line segment of length a
b

construct U , V as above. Then let
the circle with centre D and radius DU meet CD at U 1. Let the line through
U 1 parallel to CV meet DV at X. The 4DU 1X „ 4DCV , with scale factor
DX : DV “ DU 1 : DC “ 1 : b, so DX has length a

b
.

(c) Use Problem 137 to construct a point G so that AG “ XY “ 1. Then draw
the circle with centre A passing through G to meet BA extended at H. Hence
HA “ 1, AB “ a.

Construct the midpoint M of HB; draw the circle with centre M and passing
through H and B.

Construct the perpendicular to HB at the point A to meet the circle at K.

Then 4HAK „ 4KAB, so AB : AK “ AK : AH. Hence AK “
?
a.

174. The key to this problem is to use Problem 158: a parallelogram (and hence
any rectangle) is divided into two congruent pieces by any straight cut through the
centre. If A is the centre of the rectangular piece of fruitcake, and B is the centre
of the combined rectangle consisting of “fruitcake plus icing”, then the line AB
gives a straight cut that divides both the fruitcake and the icing exactly in two.

175.

(a) The minute hand is pointing exactly at “7”, but the hour hand has moved 7
12

of
the way from “1” to “2”: that is, 7

12
of 30˝, or 17 1

2

˝
. Hence the angle between

the hands is 162 1
2

˝
.

The same angle arises whenever the hands are trying to point in opposite
directions, but are off-set by 7

12
of 30˝, or 17 1

2

˝
. This suggests that instead

of “35 minutes after 1” we should consider “35 minutes before 11”, or 10:25.

(b) The two hands coincide at midnight. The minute hand then races ahead, and
the hands do not coincide again until shortly after 1:00 – and indeed after 1:05.

More precisely, in 60 minutes, the minute hand turns through 360˝, so in x
minutes, it turns through 6x˝. In 60 minutes the hour hand turns through 30˝,
so in x minutes, the hour hand turns through 1

2
x˝.

The hands overlap when

1

2
x ” 6x pmod 360q,

or when 11
2
x is a multiple of 360.
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This occurs when x “ 0 (i.e. at midnight); then not until

x “
720

11
“ 65

5

11
,

and the time is 5 5
11

minutes past 1: that is, after 1 1
11

hours.

It occurs again 1 1
11

hours, or 65 5
11

minutes, later – namely at 10 10
11

minutes past
2, and so on.

Hence the phenomenon occurs at midnight, and then 11 more times until noon
(with noon as the 12th time; and then 11 more times until midnight – and hence
23 times in all (including both midnight occurrences).

(c) If we add a third hand (the ‘second hand’), all three hands coincide at midnight.

In x minutes, the second hand turns through 360x˝.

We now know exactly when the hour hand and minute hand coincide, so we can
check where the second hand is at these times. For example, at 5 5

11
minutes

past 1, the second hand has turned through p360ˆ 65 5
11
q
˝, and

360ˆ 65
5

11
” 360ˆ

5

11
pmod 360q,

so the second hand is nowhere near the other two hands.

The kth occasion when the hour hand and minute hands coincide occurs at
k ˆ 1 1

11
hours after midnight, when the two hands point in a direction

`

360k
11

˘˝

clockwise beyond “12” . At the same time, the second hand has turned through
p360ˆ 65 5

11
ˆ kq˝, and

360ˆ 65
5

11
ˆ k ” 360ˆ

5

11
ˆ k pmod 360q,

or five times as far round, and these two are never equal pmod 360q.

176.

Note: One of the things that makes it possible to calculate distances exactly here is
that the angles are all known exactly, and give rise to lots of right angled triangles.

The rotational symmetry of the clockface means we only have to consider segments
with one endpoint at 12 o’clock (say A). The reflectional symmetry in the line AG
means that we only have to find AB, AC, AD, AE, AF , and AG.

Clearly AG “ 2. If O denotes the centre of the clockface, then AD is the
hypotenuse of an isosceles triangle 4OAD with legs of length 1, so AD “

?
2.

4ACO is isosceles (OA “ OC “ 1) with apex angle =AOC “ 60˝, so the triangle
is equilateral. Hence AC “ OA “ 1.

It follows that ACEGIK is a regular hexagon, so AE “
?

3 (if OC meets AE at
X, then 4ACX is a 30-60-90 triangle, and so is half of an equilateral triangle,

whence AX “
?
3
2

).

It remains to find AB and AF .
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Let OB meet AC at Y . Then OY “
?
3
2

(since 4OY A is a 30-60-90 triangle).

6 BY “ 1´
?
3
2

, AY “ 1
2
, so AB “

a

2´
?

3.

Finally, AB subtends =AOB “ 30˝ at the centre, whence =OAB “ =OBA “ 75˝

and =AGB “ 15˝.

6 =ABG “ 90˝ so we may apply Pythagoras’ Theorem to 4ABG to find BG “

AF “
a

2`
?

3.

177.
?

1 is the distance from p0, 0, 0q to p1, 0, 0q.?
2 is the distance from p0, 0, 0q to p1, 1, 0q.?
3 is the distance from p0, 0, 0q to p1, 1, 1q.?
4 is the distance from p0, 0, 0q to p2, 0, 0q.?
5 is the distance from p0, 0, 0q to p2, 1, 0q.?
6 is the distance from p0, 0, 0q to p2, 1, 1q.?
7 cannot be realized as a distance between integer lattice points in 3D.?
8 is the distance from p0, 0, 0q to p2, 2, 0q.?
9 is the distance from p0, 0, 0q to p3, 0, 0q.?
10 is the distance from p0, 0, 0q to p3, 1, 0q.?
11 is the distance from p0, 0, 0q to p3, 1, 1q.?
12 is the distance from p0, 0, 0q to p2, 2, 2q.?
13 is the distance from p0, 0, 0q to p3, 2, 0q.?
14 is the distance from p0, 0, 0q to p3, 2, 1q.?
15 cannot be realized as a distance between integer lattice points in 3D.?
16 is the distance from p0, 0, 0q to p4, 0, 0q.?
17 is the distance from p0, 0, 0q to p4, 1, 0q.

Note: The underlying question extends Problem 32:

Which integers can be represented as a sum of three squares?

This question was answered by Legendre (1752–1833):

Theorem. A positive integer can be represented as a sum of three
squares if and only if it is not of the form 4ap8b` 7q.

178.

(a) Let AD and CE cross at X. Join DE. Then =AXC “ =EXD (vertically
opposite angles). Hence =CAD`=ACE “ =ADE`=CED, so the five angles
of the pentagonal star have the same sum as the angles of 4BED. Hence the
five angles have sum π radians.

(b) Start with seven vertices A, B, C, D, E, F , G arranged in cyclic order.

(i) Consider first the 7-gonal star ADGCFBE. Let GD and BE cross at X and
let GC and BF cross at Y . Join DE, BG. As in part (a),

=BGC `=GBF “ =BFC `=GCF,
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and
=BGD `=GBE “ =BED `=GDE,

so the angles in the 7-gonal star have the same sum as the angles in 4ADE.
Hence the seven angles have sum π radians.

(ii) Similar considerations with the 7-gonal star ACEGBDF show that its seven
angles have sum 3π radians.

Note: Notice that the three possible “stars” (including the polygon
ABCDEFG) have angle sums π radians, 3π radians, and 5π radians.

(c) if n “ 2k` 1 is prime, we may join A to its immediate neighbour B (1-step), or
to its second neighbor C (2-step), . . . , or to its kth neighbour (k-step), so there
are k different stars, with angle sums

pn´ 2qπ, pn´ 4qπ, pn´ 6qπ, . . . , 3π, π

respectively.

If n is not prime, the situation is slightly more complicated, since, for each
divisor m of n, the km-step stars break up into separate components.

179.

(a)(i) Let the other three pentagons be CDRST , DEUVW , EAXY Z.
At A we have three angles of 108˝, so =NAX “ 36˝.
4ANX is isosceles (AN “ AB “ AE “ AX), so =AXN “ 72˝.
Hence =AXY `=AXN “ 180˝, so Y , X, N lie in a straight line.
Similarly M , N , X lie in a straight line.

Hence M , N , X, Y lie on a straight line segment MY of length 1 ` Y N “

2`NX.

(ii) In the same way it follows that MP passes through L and Q, that PS passes
through O and T , etc. so that the figure fits snugly inside the pentagon
MPSV Y , whose angles are all equal to 108˝. Moreover, 4ANX ” 4BQL
(by SAS-congruence), so XN “ LQ, whence MP “ YM . Similarly MP “
PS “ SV “ V Y , so MPSV Y is a regular pentagon.

(iii) In the regular pentagon EAXY Z the diagonal EY ‖ AX.
Moreover XAC is a straight line, and =ACB`=NBC “ 180˝, so AC ‖ NB.

Hence Y E ‖ NB, and Y E “ NB “ τ (the Golden Ratio 1`
?
5

2
), so Y EBN

is a parallelogram.

Hence Y N “ EB “ τ , so YM “ 1` τ “ τ2.

(b)(i)
4MPY ” 4PSM ” 4SV P ” 4V Y S ” 4YMV

(by SAS-congruence), so

Y P “MS “ PV “ SY “ VM
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Also =PMS “ =MPY “ 36˝;
6 4BMP has equal base angles, and so is isosceles.
Hence BM “ BP , and =MBP “ 108˝ “ =ABC.
Similarly =AMY “ =AYM “ 36˝.
6 4AMY ” 4BPM (by ASA-congruence), so

AY “ AM “ BM “ BP.

4MAB ” 4PBC – by ASA-congruence:

=BPC “ 108˝ ´=BPM ´=CPS “ 36˝ “ =AMB,

MA “ PB, and

=PBC “ =MBA “ =MAB.

Hence AB “ BC.

Continuing round the figure we see that

AB “ BC “ CD “ DE “ EA

and that
=A “ =B “ =C “ =D “ =E.

(ii) Extend DB to meet MP at L, and extend DA to meet MY at N .
Then 36˝ “ =DBC “ =LBM (vertically opposite angles). Hence 4LBM
has equal base angles and so is isosceles: LM “ LB. Similarly NM “ NA.
Now 4LBM ” 4NAM (by ASA-congruence, since MA “ MB), so
LM “ LB “ NA “ NM .
In the regular pentagon ABCDE we know that =DBC “ 36˝; and in
4LBM , =LBM “ =DBC (vertically opposite angles), so =MLB “ 108˝.
Hence =BLP “ 72˝ “ =LBP , so 4PLB is isosceles: PL “ PB.

In the regular pentagon MPSV Y , 4PMA is isosceles, so PM “ PA.

6 LM “ PM ´ PL “ PA´ PB “ BA.

Hence ABLMN is a pentagon with five equal sides. It is easy to check that
the five angles are all equal.

(iii) We saw in (i) that the five diagonals of MPSV Y are equal. We showed
in Problem 3 that each has length τ , and that MPDY is a rhombus, so
DY “ PM “ 1. Similarly SE “ 1.

Hence SD “ τ ´ 1, and DE “ SE ´ SD “ 2´ τ “ pτ2q´1.

180.

(a) Since the tiles fit together “edge-to-edge”, all tiles have the same edge length.
The number k of tiles meeting at each vertex must be at least 3 (since the angle
at each vertex of a regular n-gon “

`

1´ 2
n

˘

π ă π), and can be at most 6 (since
the smallest possible angle in a regular n-gon occurs when n “ 3, and is then
π
3

).

We consider each possible value of k in turn.
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– If k “ 6, then n “ 3 and we have six equilateral triangles at each vertex.

– If k “ 5, then we would have
`

1´ 2
n

˘

π “ 2π
5

, so n “ 10
3

is not an integer.

– If k “ 4, then n “ 4 and we have four squares at each vertex.

– If k “ 3, then n “ 6 and we have three regular hexagons at each vertex.

Hence n “ 3, or 4, or 6.

(b)(i) If k “ n “ 4, it is easy to form the vertex figure. It may seem ‘obvious’ that
it continues “to infinity”; but if we think it is obvious, then we should explain
why: (choose the scale so that the common edge length is “1”; then let the
integer lattice points be the vertices of the tiling, with the tiles as translations
of the unit square formed by p0, 0q, p1, 0q, p1, 1q, p0, 1q).

(ii) If k “ 6, n “ 3, let the vertices correspond to the complex numbers p ` qω,
where p, q are integers, and where ω is a complex cube root of 1 (that is, a
solution of the equation ω3

“ 1 ‰ ω, or ω2
`ω` 1 “ 0), with the edges being

the line segments of length 1 joining nearest neighbours (at distance 1).

(iii) If k “ 3, n “ 6, take the same vertices as in (ii), but eliminate all those for
which p` q ” 0 pmod 3q, then let the edges be the line segments of length 1
joining nearest neighbours.

181.

(a)(i) As before, the number k of tiles at each vertex lies between 3 and 6. However,
this time k does not determine the shape of the tiles. Hence we introduce a
new parameter: the number of t of triangles at each vertex, which can range
from 0 up to 6. The derivations are based on elementary arithmetic, for which
it is easier to work with angles in degrees.

∗ If t “ 6, then the vertex figure must be 36.

∗ If t “ 5, the remaining gap of 60˝ could only take a sixth triangle, so this
case cannot occur.

∗ If t “ 4, we are left with angle of 120˝, so the only possible vertex figure is
34.6.

∗ If t “ 3, then we are left with an angle of 180˝, so the only possible
configurations are 33.42 (with the two squares together), or 32.4.3.4 (with
the two squares separated by a triangle).

∗ If t “ 2, we are left with an angle of 240˝, which cannot be filled with 3 or
more tiles (since the average angle size would then be at most 80˝, and no
more triangles are allowed), so the only possible vertex figures are 32.4.12,
3.4.3.12, 32.62, 3.6.3.6 (since 32.5.n or 3.5.3.n would require a regular
n-gon with an angle of 132˝, which is impossible).

Note: The compactness of the argument based on the parameter t is about
to end. We continue the same approach, with the focus shifting from the
parameter t to a new parameter s – namely the number of squares in each
vertex figure.



252 Geometry

∗ Suppose t “ 1. We are left with an angle of 300˝.
If s “ 0, the 300˝ cannot be filled with 3 or more tiles (since then the
average angle size would be at most 100˝, and no squares can be used), so
there are exactly two additional tiles. Since each tile has angle ď 180˝, we
cannot use a hexagon, so the smallest tile has at least 7 sides; and since
the average of the two remaining angle sizes is 150˝, the smallest tile has at
most 12 sides. It is now easy to check that the only possible vertex figures
are 3.7.42, 3.8.24, 3.9.20, 3.10.15, 3.122.
If s “ 1, we would be left with an angle of 210˝, which would require two
larger tiles with average angle size 105˝, which is impossible.
If s “ 2, the only possible vertex figures are 3.42.6, or 3.4.6.4.
Clearly we cannot have s “ 3 (or we would be left with a gap of 30˝); and
t “ 1, s ą 3 is also impossible.

∗ Hence we may assume that t “ 0, in which case s is at most 4.
If s “ 4, then the vertex figure is 44.
If s “ 3, then the remaining gap could only take a fourth square, so this
case does not occur.
If s “ 2, we are left with an angle of 180˝, which cannot be filled.
If s “ 1, we are left with an angle of 270˝, so there must be exactly two
additional tiles and the only possible vertex figures are 4.5.20, 4.6.12, or
4.82 (since a regular 7-gon would leave an angle of 141 3

7

˝
).

∗ Hence we may assume that t “ s “ 0, and proceed using the parameter
f – namely the number of regular pentagons. Clearly f is at most 3, and
cannot equal 3 (or we would leave an angle of 36˝).
If f “ 2, we are left with an angle of 144˝, so the only vertex figure is
52.10.
If f “ 1, we are left with an angle of 252˝, which requires exactly two
further tiles, whose average angle is 126˝; but this forces us to use a
hexagon – leaving an angle of 132˝, which is impossible.

∗ Hence we may assume that t “ s “ f “ 0. So the smallest possible tile is a
hexagon, and since we need at least 3 tiles at each vertex, the only possible
vertex figure is 63.
Hence, the simple minded necessary condition (namely that the vertex
figure should have no gaps) gives rise to a list of twenty-one possible vertex
figures:

36, 34.6, 33.42, 32.4.3.4, 32.4.12, 3.4.3.12, 32.62, 3.6.3.6, 3.7.42,
3.8.24, 3.9.20, 3.10.15, 3.122, 3.42.6, 3.4.6.4, 44, 4.5.20, 4.6.12,
4.82, 52.10, 63.

(ii) Lemma. The vertex figures 32.4.12, 3.4.3.12, 32.62, 3.7.42, 3.8.24,
3.9.20, 3.10.15, 3.42.6, 4.5.20, 52.10 do not extend to semi-regular tilings
of the plane.

Proof. Suppose to the contrary that any of these vertex figures could be
realized by a semi-regular tiling of the plane. Choose a vertex B and consider
the tiles around vertex B.
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In the first eight of the listed vertex figures we may choose a triangle T “

ABC, which is adjacent to polygons of different sizes on the edges BA (say)
and BC.

In the two remaining vertex figures, there is a face T “ ABC ¨ ¨ ¨ with an
odd number of edges, which has the same property – namely that of being
adjacent to an a-gon on the edge BA (say) and a b-gon on the edge BC with
a ‰ b. (For example, in the vertex figure 32.4.12, T “ ABC is a triangle,
and the faces on BA and on BC are – in some order – a 3-gon and a 4-gon,
or a 3-gon and a 12-gon.)

In each case let the face T be a p-gon.

If the face adjacent to T on the edge BA is an a-gon, and that on edge
BC is a b-gon, then the vertex figure symbol must include the sequence
“. . . a.p.b . . . ”.

If we now switch attention from vertex B to the vertex A, then we know that
A has the same vertex figure, so must include the sequence “. . . a.p.b . . . ”, so
the face adjacent to the other edge of T at A must be a b-gon. As one traces
round the edges of the face T , the faces adjacent to T are alternately a-gons
and b-gons – contradicting the fact that T has an odd number of edges.

Hence none of the listed vertex figures extends to a semi-regular tiling of the
plane. QED

(b) It transpires that the remaining eleven vertex figures

36, 34.6, 33.42, 32.4.3.4, 3.6.3.6, 3.122, 3.4.6.4, 44, 4.6.12, 4.82, 63

can all be realized as semi-regular tilings (and one – namely 34.6 – can be
realized in two different ways, one being a reflection of the other).

In the spirit of Problem 180(b), one should want to do better than to produce
plausible pictures of such tilings, by specifying each one in some canonical way.
We leave this challenge to the reader.

182. [We construct a regular hexagon, and take alternate vertices.]

Draw the circle with centre O passing through A. The circle with centre A passing
through O meets the circle again at X and Y .

The circle with centre X and passing through A and O meets the circle again at
B; and the circle with centre Y and passing through A and O, meets the circle
again at C.

Then 4AOX, 4AOY , 4XOB, 4Y OC are equilateral, so =AXB “ 120˝ “
=AY C, and =XAB “ 30˝ “ =Y AC.

Hence 4AXB ” 4AY C, so AB “ AC. 4ABC is isosceles so =B “ =C,
with apex angle =BAC “ =XAY ´ =XAB ´ =Y AC “ 60˝; hence 4ABC is
equiangular and so equilateral.
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183.

(a) Draw the circle with centre O and passing through A.

Extend AO beyond O to meet the circle again at C.

Construct the perpendicular bisector of AC, and let this meet the circle at B
and at D.

Then BA “ BC (since the perpendicular bisector of AC is the locus of points
equidistant from A and from C); similarly DA “ DC.

4OAB and 4OCB are both isosceles right angled triangles, so =ABC is a
right angle (or appeal to “the angle subtended on the circle by the diameter
AC”). Similarly =A, =C, =D are right angles, so ABCD is a rectangle with
BA “ BC, and hence a square.

Note: This construction starts with the regular 2-gon AC inscribed in its
circumcircle, and doubles it to get a regular 4-gon, by constructing the
perpendicular bisectors of the “two sides” to meet the circumcircle at B and
at D.

(b) Erect the perpendiculars to AB at A and at B.

Then draw the circles with centre A and passing through B, and with centre B
and passing through A.

Let these circles meet the perpendiculars to AB (on the same side of AB) at D
and at C.

Then AD “ BC, and AD ‖ BC, so ABCD is a parallelogram (by Problem
159(a)), and hence a (being a parallelogram with a right angle), and so a square
(since AB “ AD).

184.

(a)(i) First construct the regular 3-gon ACE with circumcentre O. Then construct
the perpendicular bisectors of the three sides AC, CE, EA, and let these
meet the circumcircle at B, D, F .

Note: Here we emphasise the general step from inscribed regular n-gon to
inscribed regular 2n-gon – even though this may seem perverse in the case of
a regular 3-gon (since we constructed the inscribed regular 3-gon in Problem
182 by first constructing the regular 6-gon and then taking alternate vertices).

(ii) First construct the regular 4-gon ACEG with circumcentre O. Then construct
the perpendicular bisectors of the four sides AC, CE, EG, GA, and let these
meet the circumcircle at B, D, F , H.

(b)(i) Construct an equilateral triangle ABO.

Then draw the circle with centre O and passing through A and B. Then
proceed as in 182.
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(ii) Extend AB beyond B, and let this line meet the circle with centre B and
passing through A at X.

Now construct a square BXY Z on the side BX as in 183(a), and let the
diagonal BY meet the circle at C.

Construct the circumcentre O of 4ABC (the point where the perpendicular
bisectors of AB, BC meet).

Construct the next vertex D as the point where the circle with centre O and
passing through A meets the circle with centre C and passing through B. The
remaining points E, F , G, H can be found in a similar way.

185.

(a)(i) There are various ways of doing this – none of a kind that most of us might
stumble upon. Draw the circumcircle with centre O and passing through A.
Extend the line AO beyond O to meet the circle again at X.

Construct the perpendicular bisector of AX, and let this meet the circle at
Y and at Z. Construct the midpoint M of OZ, and join MA.

Let the circle with centre M and passing through A meet the line segment
OY at the point F .

Finally let the circle with centre A and passing through F meet the
circumcircle at B. Then AB is a side of the required regular 5-gon. (The
vertex C on the circumcircle is then obtained as the second meeting point of
the circumcircle with the circle having centre B and passing through A. The
points D, E can be found in a similar way.)

The proof that this construction does what is claimed is most easily
accomplished by calculating lengths.

Let OA “ 2. Then OF “
?

5´ 1, so AF “
a

10´ 2
?

5 “ AB. It remains to
prove that this is the correct length for the side of a regular pentagon inscribed
in a circle of radius 2. Fortunately the work has already been done, since
4OAB is isosceles with apex angle equal to 72˝. If we drop a perpendicular
from O to AB, then we need to check whether it is true that

sin 36˝ “

a

10´ 2
?

5

4
.

But this was already shown in Problem 3(c).

(ii) To construct a regular 10-gonABCDEFGHIJ , first construct a regular 5-gon
ACEGI with circumcentre O; then construct the perpendicular bisectors of
the five sides, and so find B, D, F , H, J as the points where these bisectors
meet the circumcircle.

(b)(i) The first move is to construct a line BX through B such that =ABX “ 108˝.
Fortunately this can be done using part (a), by temporarily treating B as the
circumcentre, drawing the circle with centre B and passing through A, and
beginning the construction of a regular 5-gon AP ¨ ¨ ¨ inscribed in this circle.
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Then =ABP “ 72˝; so if we extend the line PB beyond B to X, then
=ABX “ 108˝. Let BX meet the circle with centre B through A at the
point C. Then BA “ BC and =ABC “ 108˝, so we are up and running.

If we let the perpendicular bisectors of AB and BC meet at O, then the circle
with centre O and passing through A also passes through B and C (and the
yet to be located points D and E). The circle with centre C and passing
through B meets this circle again at D; and the circle with centre A and
passing through B meets the circle again at E.

(ii) To construct the regular 10-gon ABCDEFGHIJ , treat B as the point O
in (a)(i) and construct a regular 5-gon AXCY Z inscribed in the circle with
centre B and passing through A.

Then =ABC “ 144˝, and BA “ BC, so C is the next vertex of the
required regular 10-gon. We may now proceed as in (a)(ii) to first construct
the circumcentre O of the required regular 10-gon as the point where the
perpendicular bisectors of AB and BC meet, then draw the circumcircle,
and finally step off successive vertices D, E, . . . of the 10-gon around the
circumcircle.

186. The number k of faces meeting at each vertex can be at most five (since more
would produce an angle sum that is too large). And k ě 3 (in order to create a
genuine corner.

• If k “ 5, then the vertex figure must be 35 (or the angle sum would be ą 360˝).

• If k “ 4, then the vertex figure must be 34 (or the angle sum would be too
large).

• If k “ 3, the angle in each of the regular polygons must be ă 120˝, so the only
possible vertex figures are 53, 43, and 33.

187. The respective midpoints have coordinates:

of AB:
`

1
2
, 1
2
, 0
˘

; of AC:
`

1
2
, 0, 1

2

˘

; of AD:
`

1, 1
2
, 1
2

˘

; of BC:
`

0, 1
2
, 1
2

˘

;

of BD:
`

1
2
, 1, 1

2

˘

; of CD:
`

1
2
, 1
2
, 1
˘

.

6 PQ “ 1?
2
“ PR “ PS “ PT “ QR “ RS “ ST “ TQ.

188.

(a) There are infinitely many planes through the apex A and the base vertex B.
Among these planes, the one perpendicular to the base BCD is the one that
passes through the midpoint M of CD. Let the perpendicular from A to the
base, meet the base BCD at the point X, which must lie on BM . Let AX have
length h. To find h we calculate the area of 4ABM in two ways.

First, BM has length
?

3, so areap4ABMq “ 1
2

`?
3ˆ h

˘

Second, 4ABM is isosceles with base AB and apex M , so has height
?

2.

6 areap4ABMq “ 1
2
p2ˆ

?
2q “

?
2.

If we now equate the two expressions for areap4ABMq, we see that h “
b

8
3
.
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(b)(i) When constructing a regular octahedron (whether using card, or tiles such
as PolydronR©) one begins by arranging four equilateral triangles around a
vertex such as A. This ‘vertex figure’ is not rigid: though we know that
BC “ CD “ DE “ EB, there is no a priori reason why the four neighbours
B, C, D, E of A should form a square, or a rhombus, or a planar quadrilateral.
We show that these four neighbours lie in a single plane: B, C, D, E are all
distance 2 from A and distance 2 from F , so (by Problem 144) they must
all lie in the plane perpendicular to the line AF and passing through the
midpoint X of AF . Moreover, 4ABX ” 4ACX (by RHS-congruence, since
AB “ AC “ 2, AX “ AX, and =AXB “ =AXC are both right angles).
Hence XB “ XC, so B, C lie on a circle in this plane with centre X. Similarly
4ABX ” 4ADX ” 4AEX, so BCDE is a cyclic quadrilateral (and a
rhombus), and hence a square – with X as the midpoint of both BD and CE.

(ii) Let M be the midpoint of BC and N the midpoint of DE.

Then NM and AF cross at X and so define a single plane. In this plane,
4ANM ” 4FMN (by SSS-congruence, since AN “ FM “

?
3, NM “

MN , MA “ NF “
?

3); hence =ANM “ =FMN , so AN ‖MF .

Similarly, if P is the midpoint of AE and Q is the midpoint of FC, then
4DPQ ” 4BQP , so DP ‖ QB. Hence the top face DEA is parallel to
the bottom face BCF , so the height of the octahedron sitting on the table is
equal to the height of 4FMN . But this triangle has sides of lengths 2,

?
3,?

3, so this height is exactly the same as the height h in part (a).

189.

(i) Let L “
`

1
2
, 0, 0

˘

and M “
`

1
2
, 1
2
, 0
˘

. Then L lies on the line ST and M is the
midpoint of NP .
4LSM is a right angled triangle with legs of length LS “ a, LM “ 1

2
, so

MS “
b

a2 ` 1
4
.

4MNS is a right angled triangle with legs of length MN “ 1
2
´ a, MS “

b

a2 ` 1
4
. Hence NS “

b

2a2 ´ a` 1
2
.

Similarly NU “
b

2a2 ´ a` 1
2
.

Let L1 “
`

0, 1
2
, 0
˘

and M 1
“

`

0, 1
2
, 1
2

˘

. Then M 1 is the midpoint of WX
and L1 lies immediately below M 1 on the line joining p0, 0, 0q to p0, 1, 0). In

the right angled triangle 4L1NM 1 we find NM 1
“

b

a2 ` 1
4
, and in the

right angled triangle 4M 1WN we then find NW “

b

2a2 ´ a` 1
2
. Similarly

NX “

b

2a2 ´ a` 1
2
.

(ii) NP “ NS precisely when 1´ 2a “
b

2a2 ´ a` 1
2
ą 0; that is, when a “ 3´

?
5

4
,

so all edges of the polyhedron have length
?
5´1
2

“ τ ´ 1.

Note: The rectangle NPRQ is a “1 by τ´1” rectangle, and 1 : τ´1 “ τ : 1. Hence
the regular icosahedron can be constructed from three congruent, and pairwise
perpendicular, copies of a “Golden rectangle”.
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190. We mimic the classification of possible vertex figures for semi-regular tilings.

We are assuming that the angles meeting at each vertex add to ă 360˝, so the
number k of faces at each vertex lies between 3 and 5. Because faces are regular,
but not necessarily congruent, k does not determine the shape of the faces. Hence
we let t denote the number of triangles at each vertex, which can range from 0 up
to 5.

• If t “ 5, then the vertex figure must be 35.

• If t “ 4, the remaining polygons have angle sum ă 120˝, so the possible vertex
figures are 34, 34.4, and 34.5.

• If t “ 3, then the remaining polygons have angle sum ă 180˝, so the only
possible vertex figures are 33, and 33.n (for any n ą 3).

• If t “ 2, then the remaining polygons have angle sum ă 240˝, so there are at
most 2 additional faces in the vertex figure (since if there were 3 or more extra
faces, the average angle size would then be at most 80˝, with no more triangles
allowed). If there is just 1 additional face, we get the vertex figure 32.n for any
n ą 3. So we may assume that there are 2 additional faces – the smallest of
which must then be a 4-gon or a 5-gon.

If the next smallest face is a 4-gon, then we get the possible vertex figures

32.42 and 3.4.3.4, 32.4.5 and 3.4.3.5, 32.4.6 and 3.4.3.6, 32.4.7 and
3.4.3.7, 32.4.8 and 3.4.3.8, 32.4.9 and 3.4.3.9, 32.4.10 and 3.4.3.10,
32.4.11 and 3.4.3.11.

If the next smallest face is a 5-gon, then we get the possible vertex figures

32.52 and 3.5.3.5, 32.5.6 and 3.5.3.6, 32.5.7 and 3.5.3.7.

Note: Before proceeding further it is worth deciding which among the putative
vertex figures identified so far seem to correspond to semi-regular polyhedra – and
then to prove that these observations are correct.

• The vertex figure 35 corresponds to the regular icosahedron.

• The vertex figure 34 corresponds to the regular octahedron; 34.4 corresponds
to the snubcube; 34.5 corresponds to the snub dodecahedron – which comes in
left-handed and right-handed forms.

• The vertex figure 33 corresponds to the regular tetrahedron, and 33.n (for any
n ą 3) corresponds to the n-gonal antiprism.

• The vertex figure 32.n for any n ą 3 does not seem to arise.

• The vertex figure 32.42 does not seem to arise; 3.4.3.4 corresponds to the
cuboctahedron; 32.4.5 and 3.4.3.5, 32.4.6 and 3.4.3.6, 32.4.7 and 3.4.3.7,
32.4.8 and 3.4.3.8, 32.4.9 and 3.4.3.9, 32.4.10 and 3.4.3.10, 32.4.11 and
3.4.3.11 do not seem to arise.

• The vertex figure 32.52 does not seem to arise, whereas 3.5.3.5 corresponds to
the icosidodecahedron; 32.5.6 and 3.5.3.6, 32.5.7 and 3.5.3.7 do not seem to
arise.
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To avoid further proliferation of spurious ‘putative vertex figures’ we inject a
version of the Lemma used for tilings somewhat earlier than we did for tilings,
and then apply the underlying idea to eliminate other spurious possibilities as they
arise.

Lemma. The vertex figures

32.42, 32.n (n ą 3), 32.4.5, 3.4.3.5, 32.4.6, 3.4.3.6, 32.4.7, 3.4.3.7,
32.4.8, 3.4.3.8, 32.4.9, 3.4.3.9, 32.4.10, 3.4.3.10, 32.4.11, 3.4.3.11,
32.52, 32.5.6, 3.5.3.6, 32.5.7, 3.5.3.7

do not arise as vertex figures of any semi-regular polyhedron.

Proof outline. Each of these requires that the vertex figure of any vertex B
includes a tile T “ ABC ¨ ¨ ¨ with an odd number of edges, for which the edge BA
is adjacent to an a-gon, the edge BC is adjacent to a b-gon (where a ‰ b), and
where the subsequent faces adjacent to T are forced to alternate – a-gon, b-gon,
a-gon, . . . – which is impossible. QED

For the rest we introduce the additional parameter s to denote the number of
4-gons in the vertex figure.

Suppose t “ 1. Then the remaining polygons have angle sum ă 300˝, so there are
at most 3 additional faces in the vertex figure (since if there were 4 or more extra
faces, the average angle size would be ă 75˝, with no more triangles allowed).

If there are 3 additional faces, the average angle size is ă 100˝, so s ą 0.

• If s ą 1, then the possible vertex figures are 3.43 (which corresponds to the
rhombicuboctahedron), 3.42 (which corresponds to the 3-gonal prism), 3.42.5
(which is impossible as in the Lemma) and 3.4.5.4 (which corresponds to the
small rhombicosidodecahedron).

• If s “ 1, then the remaining faces have angle sum ă 210˝, so there can only be
one additional face, and every 3.4.n (n ą 4q is impossible as in the Lemma.

• If s “ 0, then the remaining faces have angle sum ă 300˝, so there are exactly
two other faces and the smallest face has ă 12 edges, so the only possible vertex
figures are

– 3.5.n (4 ă n), which is impossible as in the Lemma;

– 3.62, which corresponds to the truncated tetrahedron;

– 3.6.n (6 ă n), which is impossible as in the Lemma;

– 3.7.n (6 ă n), which is impossible as in the Lemma;

– 3.82, which corresponds to the truncated cube;

– 3.8.n (8 ă n), which is impossible as in the Lemma;

– 3.9.n (8 ă n), which is impossible as in the Lemma;

– 3.102, which corresponds to the truncated dodecahedron;

– 3.10.n (10 ă n), which is impossible as in the Lemma;

– 3.11.n (10 ă n), which is impossible as in the Lemma.
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Thus we may assume that t “ 0 – in which case, s ă 4.

• If s “ 3, then the only possible vertex figure is 43, which corresponds to the
cube.

• If s “ 2, then the remaining faces have angle sum ă 180˝, so there is exactly
one additional face, and every 42.n (n ą 4) corresponds to the n-gonal prism.

• If s “ 1, then the remaining faces have angle sum ă 270˝, so there are at
most 2 other faces with the smallest face having ă 8 edges, so the only possible
vertex figures are 4.5.n (for 4 ă n ă 20), 4.62, 4.6.n (for 6 ă n ă 12), 4.72,
4.7.n (for 7 ă n ă 10). Among these 4.5.n is impossible as in the Lemma;
4.62 corresponds to the truncated octahedron; 4.6.n with n odd is impossible
as in the Lemma; 4.6.8 corresponds to the great rhombicuboctahedron; 4.6.10
corresponds to the great rhombicosidodecahedron; 4.7.n is impossible as in the
Lemma.

• If s “ 0, there must be exactly three faces at each vertex, and the smallest
must be a 5-gon, so the only possible vertex figures are 53, which corresponds
to the regular dodecahedron; 52.n (for n ą 5), which is impossible as in the
Lemma; 5.62, which corresponds to the truncated icosahedron; or 5.6.7, which
is impossible as in the Lemma.

191.

(a)(i) =AXD “ 100˝, so =ADB “ 40˝. In 4ABD we then see that =ABD “ 40˝,
so 4ABD is isosceles with AB “ AD. 4ABC is isosceles with a base angle
=BAC “ 60˝, so 4ABC is equilateral. Hence =CBD “ 20˝.

(ii) 4ABC is equilateral, so AC “ AB “ AD.

Hence 4ADC is isosceles, so =ACD “ 70˝ “ =ADC, whence =BDC “

70˝ ´=ADB “ 30˝.

(b)(i) As before =AXD “ 100˝, so =ADB “ 40˝.
In 4ABD we then see that =ABD “ 30˝, so 4ABD is not isosceles (as it
was in (a)).
4ABC is isosceles, so =BCA “ 70˝, whence =CBD “ 10˝.
In 4XCD, =CXD “ 80˝, so =BDC ` =ACD “ 100˝, but there is no
obvious way of determining the individual summands: =BDC and =ACD.

(ii) No lengths are specified, so we may choose the length of AC. The point B
then lies on the perpendicular bisector of AC, and =CAB “ 70˝ determines
the location of B exactly. The line AD makes an angle of 40˝ with AC ,
and BD makes an angle of 80˝ with AC, so the location of D is determined.
Hence, despite our failure in part (i), the angles are determined.
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192.

(i) If P lies on CB, then PC “ b cosC, AP “ b sinC, and in the right angled
triangle 4APB we have:

c2 “ pb sinCq2 ` pa´ b cosCq2

“ a2 ` b2psin2 C ` cos2 Cq ´ 2ab cosC

“ a2 ` b2 ´ 2ab cosC.

If P lies on CB extended beyond B, then PC “ b cosC, AP “ b sinC as before,
and in the right angled triangle 4APB we have:

c2 “ pb sinCq2 ` pb cosC ´ aq2

“ a2 ` b2psin2 C ` cos2 Cq ´ 2ab cosC

“ a2 ` b2 ´ 2ab cosC.

(ii) If P lies on BC extended beyond C, then PC “ b cos =ACP “ ´b cosC, AP “
b sin =ACP “ b sinC, and in the right angled triangle 4APB we have:

c2 “ pb sinCq2 ` pa` PCq2

“ pb sinCq2 ` pa´ b cosCq2

“ a2 ` b2psin2 C ` cos2 Cq ´ 2ab cosC

“ a2 ` b2 ´ 2ab cosC.

193. There are many ways of doing this – once one knows the Sine Rule and
Cosine Rule. If we let =BDC “ y and =ACD “ z, then one route leads to the
identity cospz´ 10˝q “ 2 sin 10˝ ¨ sin z, from which it follows that z “ 80˝, y “ 20˝.

194.

(a) The angle between two faces, or two planes, is the angle one sees “end-on” – as
one looks along the line of intersection of the two planes. This is equal to the
angle between two perpendiculars to the line of intersection – one in each plane.

If M is the midpoint of BC, then 4ABC is isosceles with apex A, so the median
AM is perpendicular to BC; similarly 4DBC is isosceles with apex D, so the
median DM is perpendicular to BC.

4MAD is isosceles with apex M , MA “ MD “
?

3, AD “ 2, so we can
use the Cosine Rule to conclude that 22

“ 3 ` 3 ´ 2 ¨ 3 ¨ cosp=AMDq, whence
cosp=AMDq “ 1

3
.

(b) cosp=AMDq “ 1
3
, and 1

3
ă 1

2
, so =AMD ą 60˝; hence we cannot fit six regular

tetrahedra together so as to share an edge.

Since =AMD is acute, =AMD ă 90˝, so we can certainly fit four regular
tetrahedra together with lots of room to spare.

We can now appeal to “trigonometric tables”, or a calculator, to see that

arccos

ˆ

1

3

˙

ă 1.24,
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that is 1.24 radians, so five tetrahedra use up less than 6.2 radians – which is
less than 2π. Hence we can fit five regular tetrahedra together around a common
edge with room to spare (but not enough to fit a sixth).

195.

(a) The angle between the faces ABC and FBC is equal to the angle between two
perpendiculars to the common edge BC. Since the two triangles are isosceles
with the common base BC, it suffices to find the angle between the two medians
AM and FM .

In Problem 188 we saw that BCDE is a square, with sides of length 2. If we
switch attention from the opposite pair of vertices A, F to the pair C, E, then
the same proof shows that ABFD is a square with sides of length 2. Hence the
diagonal AF “ 2

?
2.

Now apply the Cosine Rule to 4AMF to conclude that:

´

2
?

2
¯2

“ 3` 3´ 2 ¨ 3 ¨ cosp=AMF q,

so it follows that cosp=AMF q “ ´ 1
3
.

(b) cosp=AMF q “ ´ 1
3
ă 0, so =AMF ą 90˝; hence we cannot fit four regular

octahedra together so as to share a common edge. Moreover, ´ 1
2
ă ´ 1

3
, so

=AMD ă 120˝; hence we can fit three octahedra together to share an edge
with room to spare (but not enough room to fit a fourth).

196. The angle =AMD “ arccos
`

1
3

˘

in Problem 194 is acute, and the angle
=AMF “ arccos

`

´ 1
3

˘

in Problem 195 is obtuse. Hence these angles are
supplementary; so the regular tetrahedron fits exactly into the wedge-shaped hole
between the face ABC of the regular octahedron and the table.

197.

(i) AB “
?

2 “ BC “ CA “ AW “ BW “ CW . Hence the four faces
ABC, BCW , CWA, WAB are all equilateral triangles, so the solid is a regular
tetrahedron (or, more correctly, the surface of the solid is a regular tetrahedron).

(ii) AC “
?

2 “ CD “ DA “ AX “ CX “ DX. Hence the four faces ACD, CDX,
DXA, XAC are equilateral triangles, so the solid is a regular tetrahedron.

(iii) AD “
?

2 “ DE “ EA “ AY “ DY “ EY . Hence the four faces ADE, DEY ,
EYA, YAD are equilateral triangles, so the solid is a regular tetrahedron.

(iv) AE “
?

2 “ EB “ BA “ AZ “ EZ “ BZ. Hence the four faces AEB, EBZ,
BZA, ZAE are equilateral triangles, so the solid is a regular tetrahedron.

(v) We get another four regular tetrahedra – such as FBCP , where P “ p1, 1,´1q.

(vi) ABCDEF is a regular octahedron (or, more correctly, the surface of the solid
is a regular octahedron).
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Note: The six vertices p˘1, 0, 0), p0,˘1, 0), p0, 0,˘1q span a regular octahedron,
with a regular tetrahedron fitting exactly on each face. The resulting compound
star-shaped figure is called the stellated octahedron. Johannes Kepler (1571–1630)
made an extensive study of polyhedra and this figure is sometimes referred to as
Kepler’s ‘stella octangula’. It is worth making in order to appreciate the way it
appears to consist of two interlocking tetrahedra.

198. Let the unlabeled vertex of the pentagonal face ABW ´ V be P . In the
pentagon ABWPV the edge AB is parallel to the diagonal VW . Hence ABWV is
an isosceles trapezium. The sides V A and WB (produced) meet at S in the plane
of the pentagon ABWPV .

4SAB has equal base angles, so SA “ SB.

Hence SV “ SW .

Similarly BC ‖WX, and WB and XC meet at some point S1 on the line WB.

Now 4S1BC ” 4SAB, so S1B “ SA “ SB. Hence S1 “ S, and the lines V A,
WB, XC, Y D, ZE all meet at S.

Since VW ‖ AB, we know that 4SAB „ 4SVW , with scale factor

τ : 1 “ VW : AB “ SV : SA.

If SA “ x, then x` 1 : x “ τ : 1, so x “ τ .

Let M be the midpoint of AB and let O denote the circumcentre of the regular
pentagon ABCDE.

4OAB is isosceles, so OM is perpendicular to AB, and the required dihedral angle
between the two pentagonal faces is =OMP .

It turns out to be better to find not the dihedral angle =OMP , but its supplement:
namely the angle =SMO.

From 4OAM we see that

OA “
1

2 sin 36˝
,

and we know that SA “ τ “ 2 cos 36˝. One can then check that OS “ cot 36˝.

Similarly, in 4OAM we have

OM “
cot 36˝

2
.

Hence in 4OMS we have
tanp=SMOq “ 2.

Hence the required dihedral angle is equal to π ´ arctan 2 « 116.56˝.

199.

(a)(i) Let M be the midpoint of AC. The angle between the two faces is equal to
=BMD.
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In 4BMD, we have BM “ DM “
?

3, BD “ 2τ “ 1 `
?

5. So the Cosine
Rule in 4BMD gives:

6` 2
?

5 “ 3` 3´ 2 ¨ 3 ¨ cosp=BMDq,

so cosp=BMDq “ ´
?
5
3

,

=BMD “ arccos

ˆ

´

?
5

3

˙

“ π ´ arccos

ˆ
?

5

3

˙

« 138.19˝.

(ii)
?
5
3
ą 1

2
; hence =BMD ą 2π

3
, so we can fit two copies along a common edge,

but not three.

(b)(i) Now let M denote the midpoint of BC, and suppose that OM extended
beyond M meets the circumcircle at V . Then BV is an edge of the regular
10-gon inscribed in the circumcircle. The circumradius OB of BCDEF
(which is equal to the edge length of the inscribed regular hexagon) is

OB “
1

sin 36˝
;

and =MBV “ 18˝, so

BV “
1

cos 18˝
.

It is easiest to use the converse of Pythagoras’ Theorem, and to write
everything first in terms of cos 36˝, then (since τ “ 2 cos 36˝, so cos 36˝ “
1`
?
5

4
) write everything in terms of

?
5.

If we use sin2 36˝ “ 1´ cos2 36˝, and 2 cos2 18˝ ´ 1 “ cos 36˝ “ 1`
?
5

4
, then

BV 2
`OB2

“

ˆ

1

cos 18˝

˙2

`

ˆ

1

sin 36˝

˙2

“
8

5`
?

5
`

8

5´
?

5

“
80

20
“ 22

“ AB2.

Hence, in the right angled triangle 4AOB, we must have OA “ BV as
claimed.

(ii) Miraculously no more work is needed. Let the vertex at the ‘south pole’ be
L, and let the pentagon formed by its five neighbours be GHIJK. It helps if
we can refer to the circumcircle of BCDEF as the ‘tropic of Cancer’, and to
the circumcircle of GHIJK as the ‘tropic of Capricorn’.

The pentagonGHIJK is parallel to BCDEF , but the vertices of the southern
pentagon have been rotated through π

5
relative to BCDEF , so that G (say)

lies on the circumcircle of the pentagon GHIJK, but sits directly below
the midpoint of the minor arc BC. Let X denote the point on the ‘tropic
of Capricorn’ which is directly beneath B. Then 4BXG is a right angled
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triangle with BG “ AB “ 2, and XG “ BV is equal to the edge length
of a regular 10-gon inscribed in the circumcircle of GHIJK. Hence, by the
calculation in (i), BX is equal to the edge length of the regular hexagon
inscribed in the same circle – which is also equal to the circumradius.

200. A necessary condition for copies of a regular polyhedron to “tile 3D (without
gaps or overlaps)” is that an integral number of copies should fit together around an
edge. That is, the dihedral angle of the polyhedron should be an exact submultiple
of 2π. Only the cube satisfies this necessary condition.

Moreover, if we take as vertices the points pp, q, rq with integer coordinates p, q,
r, and as our regular polyhedra all possible translations of the standard unit cube
having opposite corners at p0, 0, 0q and p1, 1, 1q, then we see that it is possible to
tile 3D using just cubes.

201. The four diameters form the four edges of a square ABCD of edge length 2.

The protruding semicircular segments on the left and right can be cut off and
inserted to exactly fill the semicircular indentations above and below.

Hence the composite shape has area exactly equal to 22
“ 4 square units.

202.

(a) If the regular n-gon is ACEG ¨ ¨ ¨ and the regular 2n-gon is ABCDEFG ¨ ¨ ¨ ,
then AC “ sn “ s and AB “ s2n “ t. If M is the midpoint of AC, AM “ s

2

and

MB “ 1´

c

p1´
´ s

2

¯2

.

6 t2 “ AB2

“

´ s

2

¯2

`

«

1´

c

1´
´ s

2

¯2

ff2

“ 1` 1´ 2

c

1´
´ s

2

¯2

“ 2´
?

4´ s2.

(1)

(b) Put s “ s2 “ 2 in (1) to get t “ s4 “
?

2. Then put s “ s4 “
?

2 in (1) to get

t “ s8 “

b

2´
?

2.

(c) Put t “ s6 “ 1 in (1) to get s “ s3 “
?

3. Then put s “ s6 “ 1 to get

t “ s12 “

b

2´
?

3.
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(d) Put s “ s5 “

?
10´2

?
5

2
to get

t “ s10 “

d

3´
?

5

2
.

203.

(a)(i) n “ 3: p3 “ 3
?

3ˆ r

n “ 4: p4 “ 4
?

2ˆ r

n “ 5: p5 “
5
?

10´2
?
5

2
ˆ r

n “ 6: p6 “ 6ˆ r

n “ 8: p8 “ 8
a

2´
?

2ˆ r

n “ 10: p10 “ 5
a

6´ 2
?

5ˆ r

n “ 12: p12 “ 12
a

2´
?

3ˆ r.

(ii)

c3 “ 5.19 ¨ ¨ ¨ ă c4 “ 5.65 ¨ ¨ ¨

ă c5 “ 5.87 ¨ ¨ ¨

ă c6 “ 6

ă c8 “ 6.12 ¨ ¨ ¨

ă c10 “ 6.18 ¨ ¨ ¨

ă c12 “ 6.21 ¨ ¨ ¨ .

(b)(i) n “ 3: P3 “ 6
?

3ˆ r

n “ 4: P4 “ 8ˆ r

n “ 5: P5 “ 10
a

5´ 2
?

5ˆ r

n “ 6: P6 “ 4
?

3ˆ r

n “ 8: P8 “ 8
`

2
?

2´ 2
˘

ˆ r

n “ 10: P10 “ 4
a

25´ 10
?

5ˆ r

n “ 12: P12 “ 12
`

4´ 2
?

3
˘

ˆ r.

(ii)

C3 “ 10.39 ¨ ¨ ¨ ą C4 “ 8

ą C5 “ 7.26 ¨ ¨ ¨

ą C6 “ 6.92 ¨ ¨ ¨

ą C8 “ 6.62 ¨ ¨ ¨

ą C10 “ 6.49 ¨ ¨ ¨

ą C12 “ 6.43 ¨ ¨ ¨ .
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(c) Let O be the centre of the circle of radius r. Let A, B lie on the circle with
=AOB “ 30˝.

Let M be the midpoint of AB – so that 4OAB is isosceles, with apex O and
height h “ OM .

Let A1 lie on OA produced, and let B1 lie on OB produced, such that OA1 “ OB1

and A1B1 is tangent to the circle.

Then 4OAB „ 4OA1B1 with 4OA1B1 larger than 4OAB, so the scale factor
1
h
“ 2

a

2´
?

3 ą 1.

Hence P12 “ 2
a

2´
?

3ˆ p12 ą p12, so C12 ą c12.

204. (i) πr (ii) π
2
r (iii) θr

205.

(a)(i) Note: This could be a long slog. However we have done much of the work
before: when the radius is 1, the most of the required areas were calculated
exactly back in Problem 3 and Problem 19.

Alternatively, the area of each of the n sectors is equal to 1
2

sin θ, where θ is
the angle subtended at the centre of the circle, and the exact values of the
required trig functions were also calculated back in Chapter 1.

a3 “
3
?

3

4
ˆ r2

a4 “ 2ˆ r2

a5 “
5

8

b

10` 2
?

5ˆ r2

a6 “
3
?

3

2
ˆ r2

a8 “ 2
?

2ˆ r2

a10 “
5

4

b

10´ 2
?

5ˆ r2

a12 “ 3ˆ r2

(ii)

d3 “ 1.29 ¨ ¨ ¨ ă d4 “ 2

ă d5 “ 2.37 ¨ ¨ ¨

ă d6 “ 2.59 ¨ ¨ ¨

ă d8 “ 2.82 ¨ ¨ ¨

ă d10 “ 2.93 ¨ ¨ ¨

ă d12 “ 3.
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(b)(i) Note: This could also be a long slog. However we have done much of the
work before. But notice that, when the radius is 1, the area of each of the n
sectors is equal to half the edge length times the height (“ 1); so if r “ 1,
then the total area is numerically equal to “half the perimeter Pn“.

A3 “ 3
?

3ˆ r2

A4 “ 4ˆ r2

A5 “ 5

b

5´ 2
?

5ˆ r2

A6 “ 2
?

3ˆ r2

A8 “ 8
´?

2´ 1
¯

ˆ r2

A10 “ 2

b

25´ 10
?

5ˆ r2

A12 “ 12
´

2´
?

3
¯

ˆ r2

(ii)

D3 “ 5.19 ¨ ¨ ¨ ą D4 “ 4

ą D5 “ 3.63 ¨ ¨ ¨

ą D6 “ 3.46 ¨ ¨ ¨

ą D8 “ 3.31 ¨ ¨ ¨

ą D10 “ 3.24 ¨ ¨ ¨

ą D12 “ 3.21 ¨ ¨ ¨ .

(c) Let O be the centre of the circle of radius r. Let A, B lie on the circle with
=AOB “ 30˝.

Let M be the midpoint of AB – so that 4OAB is isosceles, with apex O and
height h “ OM .

Let A1 lie on OA produced, and let B1 lie on OB produced, such that OA1 “ OB1

and A1B1 is tangent to the circle.

Then 4OAB „ 4OA1B1 with 4OAB contained in 4OA1B1, so the scale factor
1
h
“ 2

a

2´
?

3 ą 1. Hence

4p2´
?

3q ¨ a12 “ A12 ą a12,

so D12 ą d12.

206. The rearranged shape (shown in Figure 9) is an “almost rectangle”, where
OA forms an “almost height” and OA “ r. Half of the 2n circular arcs such as
AB form the upper “width”, and the other half form the “lower width”, so each
of these “almost widths” is equal to half the perimeter of the circle – namely πr.
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Figure 9: Rectification of a circle.

Hence the area of the rearranged shape is very close to

r ˆ πr “ πr2.

207.

(a) Cut along a generator, open up and lay the surface flat to obtain: a 2πr by h
rectangle and two circular discs of radius r.

Hence the total surface area is

2πr2 ` 2πrh “ 2πrpr ` hq.

(b) The lateral surface consists of n rectangles, each with dimensions sn by h (where
sn is the edge length of the regular n-gon), and hence has area Pnh “ 2Πnrh.

Adding in the two end discs (each with area 1
2
Pnr) then gives total surface area

2Πnrpr ` hq.

208.

(a) (i) 1
2
πr2; (ii) 1

4
πr2; (iii) θ

2
r2.

(b) The sector has two radii of total length 2r. Hence the circular must have length
pπ ´ 2qr, and so subtends an angle π ´ 2 at the centre, so has area π´2

2
r2.

209.

(a) Focus first on the sloping surface. If we cut along a “generator” (a straight
line segment joining the apex to a point on the circumference of the base), the
surface opens up and lays flat to form a sector of a circle of radius l. The outside
arc of this sector has length 2πr, so the sector angle at the centre is equal to
r
l
¨ 2π, and hence its area is r

l
¨ πl2 “ πrl.

Adding the area of the base gives the total surface area of the cone as

πrpr ` lq “
1

2
¨ 2πrpr ` lq.
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(b) Let M be the midpoint of the edge BC and let l denote the ‘slant height’ AM .
Then the area of the n sloping faces is equal to 1

2
Pn ¨ l, while the area of the

base is equal to 1
2
Pn ¨ r.

Hence the surface area is precisely 1
2
Pnpr ` lq.

210.

(a) If AB is an edge of the inscribed regular n-gon ABCD ¨ ¨ ¨ , and O is the
circumcentre, then =AOB “ 2π

n
, so AB “ 2r sin π

n
. Hence the required ratio is

equal to
sin π

n
π
n

, which tends to 1 as n tends to 8.

(b) If AB is an edge of the circumscribed regular n-gon ABCD ¨ ¨ ¨ , and O is the
circumcentre, then =AOB “ 2π

n
, so AB “ 2r tan π

n
. Hence the required ratio is

equal to
tan π

n
π
n

, which tends to 1 as n tends to 8.

211.

(a) If AB is an edge of the inscribed regular n-gon ABCD ¨ ¨ ¨ , and O is the
circumcentre, then =AOB “ 2π

n
, so areap4OABq “ 1

2
r2 sin 2π

n
. Hence the

required ratio is equal to
sin 2π

n
2π
n

, which tends to 1 as n tends to 8.

(b) If AB is an edge of the circumscribed regular n-gon ABCD ¨ ¨ ¨ , and O is
the circumcentre, then =AOB “ 2π

n
, so areap4OABq “ r2 tan π

n
. Hence the

required ratio is equal to
tan π

n
π
n

, which tends to 1 as n tends to 8.

212.

(a) areapP2q “ areapP1q ` areapP2 ´ P1q ą areapP1q.

(b) This general result is clearly related to the considerations of the previous section.
But it is not clear whether we can really expect to prove it with the tools
available. So it has been included partly in the hope that readers might come
to appreciate the difficulties inherent in proving such an “obvious” result.

In the end, any attempt to prove it seems to underline the need to use “proof
by induction” – for example, on the number of edges of the inner polygon. This
method is not formally treated until Chapter 6, but is needed here.

‚ Suppose the inner polygon P1 “ ABC has just n “ 3 edges, and has perimeter
p1.

Draw the line through A parallel to BC, and let it meet the (boundary of the)
polygon P2 at the points U and V . The triangle inequality (Problem 146(c))
guarantees that the length UV is less than or equal to the length of the compound
path from U to V along the perimeter of the polygon P2 (keeping on the opposite
side of the line UV from B and C). So, if we cut off the part of P2 on the side
of the line UV opposite to B and C, we obtain a new outer convex polygon P3,
which contains P1, and whose perimeter is no larger than that of P2.
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Now draw the line through B parallel to AC, and let it meet the boundary of
P3 at points W , X. If we cut off the part of P3 on the side of the line WX
opposite to A and C, we obtain a new outer convex polygon P4, which contains
P1, and whose perimeter is no larger than that of P3.

If we now do the same by drawing a line through C parallel to AB, and cut off
the appropriate part of P4, we obtain a final outer convex polygon P5, which
contains the polygon P1, and whose perimeter is no larger than that of P4 – and
hence no larger than that of the original outer polygon P2.

All three vertices A, B, C of P1 now lie on the boundary of the outer polygon
P5, so the triangle inequality guarantees that AB is no larger than the length
of the compound path along the boundary of P5 from A to B (staying on the
opposite side of the line AB from C). Similarly BC is no larger than the length
of the compound path along the boundary of P5 from B to C; and CA is no
larger than the length of the compound path along the boundary of P5 from C
to A.

Hence the perimeter p1 of the triangle P1 is no larger than the perimeter of
the outer polygon P5, whose perimeter was no larger than the perimeter of the
original outer polygon P2. Hence the result holds when the inner polygon is a
triangle.

‚ Now suppose that the result has been proved when the inner polygon is a
k-gon, for some k ě 3, and suppose we are presented with a pair of polygons
P1, P2 where the inner polygon P1 “ ABCD ¨ ¨ ¨ is a convex pk ` 1q-gon.

Draw the line m through C parallel to BD. Let this line meet the outer polygon
P2 at U and V . Cut off the part of P2 on the opposite side of the the line UCV
to B and D, leaving a new outer convex polygon P with perimeter no greater
than that of P2. We prove that the perimeter of polygon P1 is less than that of
polygon P – and hence less than that of P2. Equivalently, we may assume that
UCV is an edge of P2.

Translate the line m parallel to itself, from m to BD and beyond, until it reaches
a position of final contact with the polygon P1, passing through the vertex X
(and possibly a whole edge XY ) of the inner polygon P1. Let this final contact
line parallel to m be m1.

Since P1 is convex and k ě 3, we know that X is different from B and from
D. As before, we may assume that m1 is an edge of the outer polygon P2. Cut
both P2 and P1 along the line CX to obtain two smaller configurations, each of
which consists of an inner convex polygon inside an outer convex polygon, but
in which

– each of the inner polygons has at most k edges, and

– in each of the smaller configurations, the inner and outer polygons both share
the edge CX.

Then (by induction on the number of edges of the inner polygon) the perimeter
of each inner polygon is no larger than the perimeter of the corresponding
outer polygon; so for each inner polygon, the partial perimeter running from
C to X (omitting the edge CX) is no larger than the partial perimeter of the
corresponding outer polygon running from C to X (omitting the edge CX). So
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when we put the two parts back together again, we see that the perimeter of P1

is no larger than the perimeter of P2.

Hence the result holds when P1 is a triangle; and if the result holds whenever
the inner polygon has k ě 3 edges, it also holds whenever the inner polygon has
pk ` 1q edges.

It follows that the result holds whatever the number of edges of the inner polygon
may be. QED

213.

(a) Join PQ. Then the lines y “ b and x “ d meet at R to form the right angled
triangle PQR.

Pythagoras’ Theorem then implies that pd´ aq2 ` pe´ bq2 “ PQ2.

(b) Join PQ. The points P “ pa, b, cq and R “ pd, e, cq lie in the plane z “ c. If we
work exclusively in this plane, then part (a) shows that

PR2
“ pd´ aq2 ` pe´ bq2.

QR “ |f ´ c|, and 4PRQ has a right angle at R. Hence

PQ2
“ PR2

`RQ2
“ pd´ aq2 ` pe´ bq2 ` pf ´ cq2.

214.

(a) areap4ABCq “ bc
2

, areap4ACDq “ cd
2

, areap4ABDq “ bd
2

.

(b) [This can be a long algebraic slog. And the answer can take very different
looking forms depending on how one proceeds. Moreover, most of the resulting
expressions are not very pretty, and are likely to incorporate errors.

One way to avoid this slog is to appeal to the fact that the modulus of the vector
product DB ˆDC is equal to the area of the parallelogram spanned by DB
and DC – and so is twice the area of 4BCD.]

(c) However part (b) is approached, it is in fact true that

areap4BCDq2 “
ˆ

bc

2

˙2

`

ˆ

cd

2

˙2

`

ˆ

bd

2

˙2

,

so that

areap4ABCq2 ` areap4ACDq2 ` areap4ABDq2 “ areap4BCDq2.

215.

(a) b and c are indeed lengths of arcs of great circles on the unit sphere: that is,
arcs of circles of radius 1 (centred at the centre of the sphere). However, back
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in Chapter 1 we used the ‘length’ of such circular arcs to define the angle (in
radians) subtended by the arc at the centre. So b and c are also angles (in
radians).

(b) The only standard functions of angles are the familiar trig functions psin, cosq.

(c) If c “ 0, then the output should specify that a “ b, so c should have no effect on
the output. This suggests that we might expect a formula that involves “adding
sin c” or “multiplying by cos c”.

Similarly when b “ 0, the output should give a “ c, so we might expect a
formula that involved “adding sin b” or “multiplying by cos b“.

In general, we should expect a formula in which b and c appear interchangeably
(since the input pair pb, cq could equally well be replaced by the input pair pc, bq
and should give the same output value of a).

(d)(i) If BC runs along the equator and =B “ =C “ π
2

, then BA and CA run
along circles of longitude, so A must be at the North pole. Since A is a right
angle, it follows that a “ b “ c “ π

2
. (This tends to rule out the idea that the

formula might involve “adding sin b and adding sin c”.)

(ii) Suppose that =B “ π
2

. Since we can imagine AB along the equator, and
since there is a right angle at A, it follows that AC and BC both lie along
circles of longitude, and so meet at the North pole. Hence C will be at the
North pole, so a “ b “ π

2
.

The inputs to any spherical version of Pythagoras’ Theorem are then b “ π
2

,
and c. And c is not constrained, so every possible input value of c must lead
to the same output a “ π

2
. This tends to suggest that the formula involves

some multiple of a product combining “cos b” with some function of c. And
since the inputs “b” and “c” must appear symmetrically, we might reasonably
expect some multiple of “cos b ¨ cos c”.

216.

(a) 4OAB1 has a right angle at A with =AOB1 “ =AOB “ c. Hence AB1 “ tan c.
Similarly AC 1 “ tan b.

Hence B1C 1
2
“ tan2 b` tan2 c.

(b) In 4OAB1 we see that OB1 “ sec c. Similarly OC 1 “ sec b. We can now apply
the Cosine Rule to 4OB1C 1 to obtain:

tan2 b` tan2 c “ sec2 b` sec2 c´ 2 sec b ¨ sec c ¨ cosp=B1OC 1q

“ sec2 b` sec2 c´ 2 sec b ¨ sec c ¨ cos a.

Hence cos a “ cos b ¨ cos c. QED

217. Construct the plane tangent to the sphere at A. Extend OB to meet this
plane at B1, and extend OC to meet the plane at C 1.
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4OAB1 has a right angle at A with =AOB1 “ =AOB “ c. Hence AB1 “ tan c.
Similarly AC 1 “ tan b.

Hence B1C 1
2
“ tan2 b` tan2 c´ 2 ¨ tan b ¨ tan c ¨ cosA.

In 4OAB1 we see that OB1 “ sec c. Similarly OC 1 “ sec b.

We can now apply the Cosine Rule to 4OB1C 1 to obtain:

tan2 b` tan2 c´ 2 ¨ tan b ¨ tan c ¨ cosA

“ sec2 b` sec2 c´ 2 sec b ¨ sec c ¨ cosp=B1OC 1q

“ sec2 b` sec2 c´ 2 sec b ¨ sec c ¨ cos a.

Hence cos a “ cos b ¨ cos c` sin b ¨ sin c ¨ cosA. QED

218. We show that sin b
sin a

“ sinB (where B denotes the angle =ABC at the vertex
B).

Construct the plane T which is tangent to the sphere at B. Let O be the centre of
the sphere; let OA produced meet the plane T at A2, and let OC produced meet
the plane T at C2.

Imagine BA positioned along the equator; then BA2 is horizontal; AC lies on a
circle of longitude, so A2C2 is vertical. Hence =C2BA2 “ =B, and =BA2C2 is a

right angle; so sinB “ A2C2

BC2
.

4OA2C2 is right angled at A2; and =A2OC2 “ b; so sin b “ A2C2

OC2
.

4OBC2 is right angled at B; and =BOC2 “ a; so sin a “ BC2

OC2
.

Hence sin b
sin a

“ sinB depends only on the angle at B, so sin b
sin a

“ sin b1

sin a1
“ sinB.

219. We show that
sin a

sinA
“

sin b

sinB
.

Position the triangle (or rather “rotate the sphere”) so that AB runs along the
equator, with AC leading into the northern hemisphere.

(i) If =A is a right angle, then

sin b

sin a
“ sinB “

sinB

sinA

by Problem 218. Hence
sin a

sinA
“

sin b

sinB
.

The same is true if =B is a right angle.

(ii) If =A and =B are both less than a right angle, one can draw the circle of
longitude from C to some point X on AB. One can then apply Problem 218
to the two triangles 4CXA and 4CXB (each with a right angle at X). Let x
denote the length of the CX. Then sin x

sin b
“ sinA, and sin x

sin a
“ sinB.
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Hence sin b ¨ sinA “ sinx “ sin a ¨ sinB, so

sin a

sinA
“

sin b

sinB
.

(iii) If =A (say) is greater than a right angle, the circle of longitude from C meets
the line BA extended beyond A at a point X (say). If we let CX “ x, then one
can argue similarly using the triangles 4CXA and 4CXB to get sin x

sin a
“ sinB,

and sin x
sin b

“ sinA, whence
sin a

sinA
“

sin b

sinB
.

220. Let X “ px, yq be an arbitrary point of the locus.

(i) Then the distance from X to m is equal to y, so setting this equal to XF gives
the equation:

y2 “ x2 ` py ´ 2aq2,

or
x2 “ 4apy ´ aq.

(ii) If we change coordinates and choose the line y “ a as a new x-axis, then the
equation becomes x2 “ 4aY . The curve is then tangent to the new x-axis at the
(new) origin, and is symmetrical about the y-axis.

221.

(a) Choose the line AB as x-axis, and the perpendicular bisector of AB as the
y-axis. Then A “ p´3, 0q and B “ p3, 0q. The point X “ px, yq is a point of the
unknown locus precisely when

px` 3q2 ` y2 “ XA2
“ p2 ¨XBq2 “ 22

ppx´ 3q2 ` y2q

that is, when
px´ 5q2 ` y2 “ 42.

This is the equation of a circle with centre p5, 0q and radius r “ 4.

(b) Choose the line AB as x-axis, and the perpendicular bisector of AB as the
y-axis.

If f “ 1, the locus is the perpendicular bisector of AB.

We may assume that f ą 1 (since if f ă 1, then BX : AX “ f´1 : 1 and
f´1

ą 1, so we may simply swap the labelling of A and B).

Now A “ p´b, 0) and B “ pb, 0q, and the point X “ px, yq is a point of the
unknown locus precisely when

px` bq2 ` y2 “ XA2
“ pf ¨XBq2 “ f2

“

px´ bq2 ` y2
‰

that is, when

x2pf2
´ 1q ´ 2bxpf2

` 1q ` y2pf2
´ 1q ` b2pf2

´ 1q “ 0
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ˆ

x´
bpf2

` 1q

f2 ´ 1

˙2

` y2 “

ˆ

2fb

f2 ´ 1

˙2

.

This is the equation of a circle with centre
´

bpf2`1q

f2´1
, 0
¯

and radius r “ 2fb
f2´1

.

222.

(a) Choose the line AB as x-axis, and the perpendicular bisector of AB as the
y-axis.

Then A “ p´c, 0q and B “ pc, 0q. The point X “ px, yq is a point of the
unknown locus precisely when

2a “ AX `BX “
a

px` cq2 ` y2 `
a

px´ cq2 ` y2,

that is, when

2a´
a

px` cq2 ` y2 “
a

px´ cq2 ` y2.

6 4a2 ´ 4a
a

px` cq2 ` y2 ` rpx` cq2 ` y2s “ rpx´ cq2 ` y2s

6 a2 ` cx “ a
a

px` cq2 ` y2

6 pa2 ´ c2qx2 ` a2y2 “ a2pa2 ´ c2q

Setting c
a
“ e then yields the equation for the locus in the form:

x2

a2
`

y2

a2p1´ e2q
“ 1.

Note: In the derivation of the equation we squared both sides (twice). This
may introduce spurious solutions. So we should check that every solution px, yq
of the final equation satisfies the original condition.

(b) The real number e ă 1 is given, so we may set the distance from F to m be
a
e

`

1´ e2
˘

. Choose the line through F and perpendicular to m as x-axis. To
start with, we choose the line m as y-axis and adjust later if necessary.

Hence F has coordinates
`

a
e

`

1´ e2
˘

, 0
˘

, and the point X “ px, yq is a point of
the unknown locus precisely when

´

x´
a

e

`

1´ e2
˘

¯2

` y2 “ pexq2,

which can be rearranged as

`

1´ e2
˘

x2 ´ 2
a

e
p1´ e2qx`

´a

e

¯2

p1´ e2q2 ` y2 “ 0,

and further as
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p1´ e2q

„

x2 ´ 2
a

e
x`

´a

e

¯2


` y2 “

´a

e

¯2

p1´ e2q ´
´a

e

¯2

p1´ e2q2

“

´a

e

¯2

pe2 ´ e4q

“ a2p1´ e2q

6

´

x´
a

e

¯2

`
y2

1´ e2
“ a2.

If we now move the y-axis to the line x “ a
e

the equation takes the simpler form:

x2

a2
`

y2

a2p1´ e2q
“ 1.

(c) This was done in the derivations in the solutions to parts (a) and (b).

223.

(a) The triangle inequality shows that, if AX ą BX, then AB `BX ě AX; hence
the locus is non-empty only when a ď c. If a “ c, then X must lie on the line
AB, but not between A and B, so the locus consists of the two half-lines on AB
outside AB. Hence we may assume that a ă c.

Choose the line AB as x-axis, and the perpendicular bisector of AB as y-axis.

Then A “ p´c, 0q and B “ pc, 0q. The point X “ px, yq is a point of the
unknown locus precisely when

2a “ |AX ´BX| “
ˇ

ˇ

ˇ

a

px` cq2 ` y2 ´
a

px´ cq2 ` y2
ˇ

ˇ

ˇ
.

If AX ą BX, we can drop the modulus signs and calculate as in Problem 222.

2a`
a

px´ cq2 ` y2 “
a

px` cq2 ` y2.

6 4a2 ` 4a
a

px´ cq2 ` y2 ` px´ cq2 ` y2 “ px` cq2 ` y2

6 a2 ´ cx “ ´a
a

px´ cq2 ` y2

6 pc2 ´ a2qx2 ´ a2y2 “ a2pc2 ´ a2q

Setting c
a
“ e (ą 1), then yields the equation for the locus in the form:

x2

a2
´

y2

a2pe2 ´ 1q
“ 1.

Note: In the derivation of the equation we squared both sides (twice). This
may introduce spurious solutions. So we should check that every solution px, yq
of the final equation satisfies the original condition.In fact, the squaring process
introducesadditional solutions in the form of a second branch of the locus,
corresponding precisely to points X where AX ă BX.
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(b) The real number e ą 1 is given, so we may set the distance from F to m be
a
e
pe2 ´ 1q. Choose the line through F and perpendicular to m as x-axis. To

start with, we choose the line m as y-axis and adjust later if necessary.

Hence F has coordinates
`

a
e
pe2 ´ 1q, 0

˘

, and the point X “ px, yq is a point of
the unknown locus precisely when

´

x´
a

e
pe2 ´ 1q

¯2

` y2 “ pexq2

6 pe2 ´ 1qx2 `
2a

e
pe2 ´ 1qx´ y2 “

´a

e

¯2

pe2 ´ 1q2

6 pe2 ´ 1q

„

x2 `
2a

e
x`

´a

e

¯2


´ y2 “

´a

e

¯2

pe2 ´ 1q2 `
´a

e

¯2

pe2 ´ 1q

“

´a

e

¯2

pe4 ´ e2q

6 pe2 ´ 1q

„

x2 `
2a

e
x`

´a

e

¯2


´ y2 “ a2pe2 ´ 1q

6

´

x`
a

e

¯2

´
y2

e2 ´ 1
“ a2

If we now move the y-axis to the line x “ ´a
e

the equation takes the simpler
form:

x2

a2
´

y2

a2pe2 ´ 1q
“ 1.

(c) This was done in derivations in the solutions to parts (a) and (b).

224.

(a) When z “ k is a constant, the equation reduces to that of a circle

x2 ` y2 “ prkq2

in the plane z “ k. When the cutting plane is the xy-plane “z “ 0”, the circle
has radius 0, so is a single point.

(b)(i) A vertical plane through the apex cuts the cone in a pair of generators crossing
at the apex.

(ii) If the cutting plane through the apex is less steep than a generator, then it
cuts the cone only at the apex.

If the cutting plane through the apex is parallel to a generator, then it cuts
the cone in a generator – a single line (the next paragraph indicates that this
line may be better thought of as a pair of “coincident” lines).

What happens when the cutting plane through the apex is steeper than a
generator may not be intuitively clear. One way to make sense of this is to
treat the cross-section as the set of solutions of two simultaneous equations –
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one for the cone, and the other for the plane (say y “ nz, with n ă r). This
leads to the equation

x2 “ pr2 ´ n2
qz2, y “ nz,

with solution set
x “ ˘z

?
r2 ´ n2, xy “ nz

which specifies a pair of lines crossing at the apex.

A slightly easier way to visualize the cross-section in this case is to let the apex
of the double cone be A, and to let X be any other point of the cross-section.
Then the line AX is a generator of the cone, so lies on the cone’s surface. But
A and X also lie in the cutting plane – so the whole line AX must lie in the
cutting plane. Hence the cross-section contains the whole line AX.

(c)(i) If the cutting plane passes through the apex and is parallel to a generator of
the cone, then we saw in (b) that the cross-section is simply the generator
itself.

(ii) Thus we assume that the cutting plane does not pass through the apex, and
may assume that it cuts the bottom half of the cone. If V is the point nearest
the apex where the cutting plane meets the cone, then the cross-section curve
starts at V and becomes wider as we go down the cone. Because the plane is
parallel to a generator, the plane never cuts the “other side” of the bottom
half of the cone, so the cross section never “closes up” – but continues to open
up wider and wider as we go further and further down the bottom half of the
cone.

Let S be the sphere, which is inscribed in the cone above the cutting plane,
and which is tangent to the cutting plane at F . Let C be the circle of contact
between S and the cone. Let A be the apex of the cone, and let the apex angle
of the cone be equal to 2θ. Let X be an arbitrary point of the cross-section.

To illustrate the general method, consider first the special case where X “ V
is the “highest” point of the cross-section. The line segment V A is tangent
to the sphere S, so crosses the circle C at some point M . Now V F lies in
the cutting plane, so is also tangent to the sphere S at the point F . Any two
tangents to a sphere from the same exterior point are equal, so it follows that
VM “ V F . Moreover, VM is exactly equal to the distance from V to the
line m (since

∗ firstly the line m lies in the horizontal plane through C and so is on the
same horizontal level as M , and

∗ secondly the shortest line VM˚ from V to m, runs straight up the cutting
plane, which is parallel to a generator – so the angle =MVM˚

“ 2θ, whence
VM˚

“ VM “ V F ).

Now let X be an arbitrary point of the cross-sectional curve, and use a similar
argument. First the line XA is always a generator of the cone, so is tangent
to the sphere S, and crosses the circle C at some point Y . Moreover, XF is
also tangent to the sphere. Hence XY “ XF . It remains to see that XY is
equal to the distance XY ˚ from X to the closest point Y ˚ on the line m –
since
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∗ firstly the two points Y and Y ˚ both lie on the same horizontal level
(namely the horizontal plane through the circle C), and

∗ secondly both make the same angle θ with the vertical.

Hence the cross-sectional curve is a parabola with focus F and directrix m.

(d)(i) If the cutting plane is less steep than a generator, the cross-section is a closed
curve. If V andW are the highest and lowest points of intersection of the plane
with the cone, then the cross-section is clearly symmetrical under reflection
in the line VW . Intuitively it is tempting to think that the lower end near
W should be ‘fatter’ than the upper part of the curve (giving an egg-shaped
cross-section). This turns out to be false, and the correct version was known
to the ancient Greeks, though the error was repeated in many careful drawings
from the 14th and 15th centuries (e.g. Albrecht Dürer (1471–1528)).

(ii) The derivation is very similar to that in part (c), and we leave the reader to
reconstruct it.

An alternative approach is to insert a second sphere S1 below the cutting
plane, and inflate it until it makes contact with the cone along a circle C 1

while at the same time touching the cutting plane at a point F 1. If X is
an arbitrary point of the cross-sectional curve, then XA is tangent to both
spheres, so meets the circle C at some point Y and meets the circle C 1 at
some point Y 1. Then Y , X, Y 1 are collinear. Moreover, XY “ XF (since
both are tangents to the sphere S from the point X), and XY 1 “ XF 1 (since
both are tangents to the sphere S1 from the point X), so

XF `XF 1 “ XY `XY 1 “ Y Y 1

But Y Y 1 is equal to the slant height of the cone between the two fixed circles
C and C 1, and so is equal to a constant k. Hence, the focus-focus specification
in Problem 222 shows that the cross-section is an ellipse.

(e)(i) If the cutting plane is steeper than a generator, the cross-section cuts both
the bottom half and the top half of the cone to give two separate parts of the
cross-section. Neither part “closes up”, so each part opens up more and more
widely.

If V is the highest point of the cross-section on the lower half of the cone,
and W is the lowest point of the cross-section on the upper half of the cone,
then it seems clear that the cross-section is symmetrical under reflection in
the line VW . But it is quite unclear that the two halves of the cross-section
are exactly congruent (though again it was known to the ancient Greeks).

(ii) The formal derivation is very similar to that in part (c), and we leave the
reader to reconstruct it.

An alternative approach is to copy the alternative in (d), and to insert a
second sphere S1 in the upper part of the cone, on the same side of the
cutting plane as the apex, inflate it until it makes contact with the cone along
a circle C 1 while at the same time touching the cutting plane at a point F 1.
If X is an arbitrary point of the cross-sectional curve, then XA is tangent
to both spheres, so meets the circle C at some point Y and meets the circle
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C 1 at some point Y 1. Then Y , X, Y 1 are collinear. Moreover, X, F , and F 1

all lie on the cutting plane. Now XY “ XF (since both are tangents to the
sphere S from the point X), and XY 1 “ XF 1 (since both are tangents to the
sphere S1 from the point X). If X is on the upper half of the cone, then

XF ´XF 1 “ XY ´XY 1 “ Y Y 1.

But Y Y 1 is equal to the slant height of the cone between the two fixed circles
C and C 1, and so is equal to a constant k. Hence, the focus-focus specification
in Problem 223 shows that the cross-section is a hyperbola.

225.

(a) (i) 21; (ii) 1 “ 20

(b) (i) 22; (ii) 1 “ 20; (iii) 4 “ 2ˆ 20
` 21

(c) (i) 23; (ii) 1 “ 20; (iii) 12 “ 2ˆ 4` 22; (iv) 6 “ 2ˆ 20
` 4

(d) (i) 24; (ii) 1 “ 20; (iii) 32 “ 2ˆ 12` 23; (iv) 24 “ 2ˆ 6` 12; (v) 8 “ 2ˆ 20
` 6

226.

(c) (i) If you look carefully at the diagram shown here you should be able to see not
only the upper and lower 3D-cubes, but also the four other 3D-cubes formed by
joining each 2D-cube in the upper 3D-cube to the corresponding 2D-cube in the
lower 3D-cube.

Note: Once we have the 3D-cube expressed in coordinates, we can specify precisely
which planes produce which cross-sections in Problem 38. The plane x`y`z “ 1
passes through the three neighbours of p0, 0, 0q and creates an equilateral triangular
cross-section. Any plane of the form z “ c (where c is a constant between 0 and 1)
produces a square cross-section. And the plane x` y` z “ 3

2
is the perpendicular

bisector of the line joining (0, 0, 0q to p1, 1, 1q, and creates a regular hexagon as
cross-section.

227.

(a) View the coordinates as px, y, zq. Start at the origin p0, 0, 0q and travel round
3 edges of the lower 2D-cube “z “ 0” to the point p0, 1, 0q. Copy this path of
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length 3 on the upper 2D-cube “z “ 1” (from p0, 0, 1q to p0, 1, 1q. Then join
p0, 0, 0q to p0, 0, 1q and join p0, 1, 0q to p0, 1, 1). The result

p0, 0, 0q, p1, 0, 0q, (1, 1, 0q, p0, 1, 0q, p0, 1, 1q, p1, 1, 1q, p1, 0, 1q, p0, 0, 1q (and
back to p0, 0, 0q)

has the property that exactly one coordinate changes when we move from each
vertex to the next. This is an example of a Gray code of length 3.

Note: How many such paths/circuits are there in the 3D-cube? We can certainly
count those of the kind described here. Each such circuit has a “direction”: the
12 edges of the 3D-cube lie in one of 3 “directions”, and each such circuit contains
all four edges in one of these 3 directions. Moreover this set of four edges can be
completed to a circuit in exactly 2 ways. So there are 3ˆ 2 such circuits. In 3D
this accounts for all such circuits. But in higher dimensions the numbers begin
to explode (in the 4D-cube there are 1344 such circuits).

(b) View the coordinates as pw, x, y, zq. Start at the origin p0, 0, 0, 0q and travel
round the 8 vertices of the lower 3D-cube “z “ 0” to the point p0, 0, 1, 0q. Then
copy this path on the upper 3D-cube “z “ 1” from p0, 0, 0, 1q to p0, 0, 1, 1q.
Finally join p0, 0, 0, 0q to p0, 0, 0, 1q and join p0, 0, 1, 0q to p0, 0, 1, 1q. The result

p0, 0, 0.0q, p1, 0, 0, 0q, p1, 1, 0, 0q, p0, 1, 0, 0q, p0, 1, 1, 0q, p1, 1, 1, 0q,
p1, 0, 1, 0q, p0, 0, 1, 0q p0, 0, 1, 1q, p1, 0, 1, 1q, p1, 1, 1, 1q, p0, 1, 1, 1q,
p0, 1, 0, 1q, p1, 1, 0, 1q, p1, 0, 0, 1q, p0, 0, 0, 1q (and back to p0, 0, 0, 0q)

has the property that exactly one coordinate changes when we move from each
vertex to the next. This is an example of a Gray code of length 4.

Note: The general construction in dimension n ` 1 depends on the previous
construction in dimension n, so makes use of mathematical induction (see Problem
262 in Chapter 6).



VI. Infinity: recursion, induction,

infinite descent

Mathematical induction
– i.e. proof by recurrence –

is . . . imposed on us,
because it is . . . the affirmation
of a property of the mind itself.

Henri Poincaré (1854–1912)

Allez en avant, et la foi vous viendra.
(Press on ahead, and understanding will follow.)

Jean le Rond d’Alembert (1717–1783)

Mathematics has been called “the science of infinity”. However, infinity
is a slippery notion, and many of the techniques which are characteristic
of modern mathematics were developed precisely to tame this slipperiness.
This chapter introduces some of the relevant ideas and techniques.

There are aspects of the story of infinity in mathematics which we shall
not address. For example, astronomers who study the night sky and
the movements of the planets and stars soon note its immensity, and its
apparently ‘fractal’ nature – where increasing the detail or magnification
reveals more or less the same level of complexity on different scales. And it
is hard then to avoid the question of whether the stellar universe is finite or
infinite.

In the mental universe of mathematics, once counting, and the process of
halving, become routinely iterative processes, questions about infinity and
infinitesimals are almost inevitable. However, mathematics recognises the
conceptual gulf between the finite and the infinite (or infinitesimal), and
rejects the lazy use of “infinity” as a metaphor for what is simply “very
large”. Large finite numbers are still numbers; and long finite sums are
conceptually quite different from sums that “go on for ever”. Indeed, in the
third century BC, Archimedes (c. 287–212 BC) wrote a small booklet called
The Sand Reckoner, dedicated to King Gelon, in which he introduced the
arithmetic of powers (even though the ancient Greeks had no convenient
notation for writing such numbers), in order to demonstrate that – contrary
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to what some people had claimed – the number of grains of sand in the
known universe must be finite (he derived an upper bound of approximately
8ˆ 1063).

The influence wielded by ideas of infinity on mathematics has been profound,
even if we now view some of these ideas as flights of fancy –

• from Zeno of Elea (c. 495 BC – c. 430 BC), who presented his paradoxes
to highlight the dangers inherent in reasoning sloppily with infinity,

• through Giordano Bruno (1548–1600), who declared that there were
infinitely many inhabited universes, and who was burned at the stake
when he refused to retract this and other “heresies”,

• to Georg Cantor (1845–1918) whose groundbreaking work in developing
a true “mathematics of infinity” was inextricably linked to his religious
beliefs.

In contrast, we focus here on the delights of the mathematics, and in
particular on how an initial doorway into “ideas of infinity” can be forged
from careful reasoning with finite entities. Readers who would like to explore
what we pass over in silence could do worse than to start with the essay on
“infinity” in the MacTutor History of Mathematics archive:

http://www-history.mcs.st-and.ac.uk/HistTopics/Infinity.html.

The simplest infinite processes begin with recursion – a process where
we repeat exactly the same operation over and over again (in principle,
continuing for ever). For example, we may start with 0, and repeat the
operation “add 1”, to generate the sequence:

0, 1, 2, 3, 4, 5, 6, 7, . . . .

Or we may start with 20 “ 1 and repeat the operation “multiply by 2”, to
generate:

1, 2, 4, 8, 16, 32, 64, 128, . . . .

Or we may start with 1.000000 ¨ ¨ ¨ , and repeat the steps involved in “dividing
by 7” to generate the infinite decimal for 1

7 :

1

7
“ 0.1428571428571428571 ¨ ¨ ¨ .

We can then vary this idea of “recursion” by allowing each operation to be
“essentially” (rather than exactly) the same, as when we define triangular
numbers by “adding n” at the nth stage to generate the sequence:

0, 1, 3, 6, 10, 15, 21, 28, . . . .

http://www-history.mcs.st-and.ac.uk/HistTopics/Infinity.html
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In other words, the sequence of triangular numbers is defined by a recurrence
relation:

T0 “ 0; and
when n ě 1, Tn “ Tn´1 ` n.

We can vary this idea further by allowing more complicated recurrence
relations – such as that which defines the Fibonacci numbers:

F0 “ 0, F1 “ 1; and
when n ě 1, Fn`1 “ Fn ` Fn´1.

All of these “images of infinity” hark back to the familiar counting numbers.

• We know how the counting numbers begin (with 0, or with 1); and

• we know that we can “add 1” over and over again to get ever larger
counting numbers.

The intuition that this process is, in principle, never-ending (so is never
actually completed), yet somehow manages to count all positive integers,
is what Poincaré called a “property of the mind itself”: that is, the idea
that we can define an infinite sequence, or process, or chain of deductions
(involving digits, or numbers, or objects, or statements, or truths) by

• specifying how it begins, and by then

• specifying in a uniform way “how to construct the next term”, or “how to
perform the next step”.

This idea is what lies behind “proof by mathematical induction”, where
we prove that some assertion Ppnq holds for all n ě 1 – so demonstrating
infinitely many separate statements at a single blow. The validity of this
method of proof depends on a fundamental property of the positive integers,
or of the counting sequence

“1, 2, 3, 4, 5, . . . ”,

namely:

The Principle of Mathematical Induction: If a subset S of
the positive integers

• contains the integer “1”,

and has the property that

• whenever an integer k is in the set S, then the next integer k`1
is always in S too,

then S contains all positive integers.
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6.1. Proof by mathematical induction I

When students first meet “proof by induction”, it is often explained in a
way that leaves them feeling distinctly uneasy, because it appears to break
the fundamental taboo:

never assume what you are trying to prove.

This tends to leave the beginner in the position described by d’Alembert’s
quote at the start of the chapter: they may “press on” in the hope that
“understanding will follow”, but a doubt often remains. So we encourage
readers who have already met proof by induction to take a step back, and to
try to understand afresh how it really works. This may require you to study
the solutions (Section 6.10), and to be prepared to learn to write out proofs
more carefully than, and rather differently from, what you are used to.

When we wish to prove a general result which involves a parameter n, where
n can be any positive integer, we are really trying to prove infinitely
many results all at once. If we tried to prove such a collection of results
in turn, “one at a time”, not only would we never finish, we would scarcely
get started (since completing the first million, or billion, cases leaves just as
much undone as at the start). So our only hope is:

• to think of the sequence of assertions in a uniform way, as consisting of
infinitely many different, but similar-looking, statements Ppnq, one for
each n separately (with each statement depending on a particular n); and

• to recognise that the overall result to be proved is not just a single
statement Ppnq, but the compound statement that “Ppnq is true, for all
n ě 1”.

Once the result to be proved has been formulated in this way, we can

• use bare hands to check that the very first statement is true (usually Pp1q);
and

• try to find some way of demonstrating that,

– as soon as we know that “Ppkq is true, for some (particular, but
unspecified) k ě 1”,

– we can prove in a uniform way that the next result Ppk ` 1q is then
automatically true.

Having implemented the first of the two induction steps, we know that Pp1q
is true.

The second bullet point above then comes into play and assures us that
(since we know that Pp1q is true), Pp2q must be true.
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And once we know that Pp2q is true, the second bullet point assures us that
Pp3q is also true.

And once we know that Pp3q is true, the second bullet point assures us that
Pp4q is also true.

And so on for ever.

We can then conclude that the whole sequence of infinitely many statements
are all true – namely that:

“every statement Ppnq is true”,

or that

“Ppn) is true, for all n ě 1.”

In other words, if we define S to be the set of positive integers n for which
the statement Ppnq is true, then S contains the element “1”, and whenever
k is in S, so is k ` 1; hence, by the Principle of Mathematical Induction we
know that S contains all positive integers.

At this stage we should acknowledge an important didactical (rather than
mathematical) ploy in our recommended layout here. It is important to
underline the distinction between

(i) the individual statements Ppnq which are the separate ingredients in the
overall statement to be proved, namely:

“Ppnq is true, for all n ě 1”,

where infinitely many individual statements have been compressed into a
single compound statement, and

(ii) the induction step, where we

– assume some particular Ppkq is known to be true, and

– show that the next statement Ppk ` 1q is then automatically true.

To underline this distinction we consistently use a different “dummy
variable” (namely “k”) in the latter case. This distinction is a psychological
ploy rather than a logical necessity. However, we recommend that readers
should imitate this distinction (at least initially).

6.2. ‘Mathematical induction’ and ‘scientific induction’

The idea of a “list that goes on for ever” arose in the sequence of powers of
4 back in Problem 16, where we asked
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Do the two sequences arising from successive powers of 4:

• the leading digits:

4, 2, 6, 2, 1, 4, 2, 6, 2, 1, 4, . . . ,

and

• the units digits:
4, 6, 4, 6, 4, 6, 4, 6, . . . ,

really “repeat for ever” as they seem to?

This example illustrates the most basic misconception that sometimes arises
concerning mathematical induction – namely to confuse it with the kind of
pattern spotting that is often called ‘scientific induction’.

In science (as in everyday life), we routinely infer that something that is
observed to occur repeatedly, apparently without exception (such as the sun
rising every morning; or the Pole star seeming to be fixed in the night sky)
may be taken as a “fact”. This kind of “scientific induction” makes perfect
sense when trying to understand the world around us – even though the
inference is not warranted in a strictly logical sense.

Proof by mathematical induction is quite different. Admittedly, it often
requires intelligent guesswork at a preliminary stage to make a guess that
allows us to formulate precisely what it is that we should be trying to prove.
But this initial guess is separate from the proof, which remains a strictly
deductive construction. For example,

the fact that “1”, “1 ` 3”, “1 ` 3 ` 5”, “1 ` 3 ` 5 ` 7”, etc. all
appear to be successive squares gives us an idea that perhaps the
identity

Ppnq: 1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q “ n2

is true, for all n ě 1.

This guess is needed before we can start the proof by mathematical
induction. But the process of guessing is not part of the proof.
And until we construct the “proof by induction” (Problem 231), we cannot
be sure that our guess is correct.

The danger of confusing ‘mathematical induction’ and ‘scientific induction’
may be highlighted to some extent if we consider the proof in Problem
76 above that “we can always construct ever larger prime numbers”, and
contrast it with an observation (see Problem 228 below) that is often used
in its place – even by authors who should know better.

In Problem 76 we gave a strict construction by mathematical induction:
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• we first showed how to begin (with p1 “ 2 say);

• then we showed how, given any finite list of distinct prime numbers
p1, p2, p3, . . . , pk, it is always possible to construct a new prime pk`1 (as
the smallest prime number dividing Nk “ p1 ˆ p2 ˆ p3 ˆ ¨ ¨ ¨ ˆ pk ` 1).

This construction was very carefully worded, so as to be logically correct.

In contrast, one often finds lessons, books and websites that present
the essential idea in the above proof, but “simplify” it into a form
that encourages anti-mathematical “pattern-spotting” which is all-too-easily
misconstrued. For example, some books present the sequence

p2;q 2` 1 “ 3; 2ˆ 3` 1 “ 7; 2ˆ 3ˆ 5` 1 “ 31; 2ˆ 3ˆ 5ˆ 7` 1 “ 211; . . .

as a way of generating more and more primes.

Problem 228

(a) Are 3, 7, 31, 211 all prime?

(b) Is 2ˆ 3ˆ 5ˆ 7ˆ 11` 1 prime?

(c) Is 2ˆ 3ˆ 5ˆ 7ˆ 11ˆ 13` 1 prime? 4

We have already met two excellent historical examples of the dangers of
plausible pattern-spotting in connection with Problem 118. There you
proved that:

“if 2n ´ 1 is prime, then n must be prime.”

You then showed that 22 ´ 1, 23 ´ 1, 25 ´ 1, 27 ´ 1 are all prime, but that
211 ´ 1 “ 2047 “ 23ˆ 89 is not. This underlines the need to avoid jumping
to (possibly false) conclusions, and never to confuse a statement with its
converse.

In the same problem you showed that:

“if ab ` 1 is to be prime and a ‰ 1, then a must be even, and b
must be a power of 2.”

You then looked at the simplest family of such candidate primes namely the
sequence of Fermat numbers fn:

f0 “ 21
` 1 “ 3, f1 “ 22

` 1 “ 5, f2 “ 24
` 1 “ 17, f3 “ 28

` 1 “ 257, f4 “ 216
` 1.

It turned out that, although f0, f1, f2, f3, f4 are all prime, and although
Fermat (1601–1665) claimed (in a letter to Marin Mersenne (1588–1648))
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that all Fermat numbers fn are prime, we have yet to discover a sixth
Fermat prime!

There are times when a mathematician may appear to guess a general result
on the basis of what looks like very modest evidence (such as noticing that
it appears to be true in a few small cases). Such “informed guesses” are
almost always rooted in other experience, or in some unnoticed feature of
the particular situation, or in some striking analogy: that is, an apparent
pattern strikes a chord for reasons that go way beyond the mere numbers.
However those with less experience need to realise that apparent patterns or
trends are often no more than numerical accidents.

Pell’s equation (John Pell (1611–1685)) provides some dramatic examples.

• If we evaluate the expression “n2 ` 1” for n “ 1, 2, 3, . . . , we may notice
that the outputs 2, 5, 10, 17, 26, . . . never give a perfect square. And this
is to be expected, since the next square after n2 is

pn` 1q2 “ n2 ` 2n` 1,

and this is always greater than n2 ` 1.

• However, if we evaluate “991n2`1” for n “ 1, 2, 3, . . . , we may observe that
the outputs never seem to include a perfect square. But this time there
is no obvious reason why this should be so – so we may anticipate that
this is simply an accident of “small” numbers. And we should hesitate to
change our view, even though this accident goes on happening for a very,
very, very long time: the smallest value of n for which 991n2`1 gives rise
to a perfect square is apparently

n “ 12 055 735 790 331 359 447 442 538 767.

6.3. Proof by mathematical induction II

Even where there is no confusion between mathematical induction and
‘scientific induction’, students often fail to appreciate the essence of “proof
by induction”. Before illustrating this, we repeat the basic structure of such
a proof.

A mathematical result, or formula, often involves a parameter n, where n
can be any positive integer. In such cases, what is presented as a single
result, or formula, is a short way of writing an infinite family of results. The
proof that such a result is correct therefore requires us to prove infinitely
many results at once. We repeat that our only hope of achieving such a
mind-boggling feat is

• to formulate the stated result for each value of n separately: that is, as a
statement Ppnq which depends on n;
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• then to use bare hands to check the “beginning” - namely that the simplest
case (usually Pp1q) is true;

• finally to find some way of demonstrating that,

– as soon as we know that Ppkq is true, for some (unknown) k ě 1,

– we can prove that the next result Ppk ` 1q is then automatically true.

We can then conclude that

“every statement Ppnq is true”,

or that

“Ppnq is true, for all n ě 1”.

Problem 229 Prove the statement:

“52n`2 ´ 24n´ 25 is divisible by 576, for all n ě 1”. 4

When trying to construct proofs in private, one is free to write anything that
helps as ‘rough work’. But the intended thrust of Problem 229 is two-fold:

• to introduce the habit of distinguishing clearly between

(i) the statement Ppnq for a particular n, and

(ii) the statement to be proved – namely “Ppnq is true, for all n ě 1”; and

• to draw attention to the “induction step” (i.e. the third bullet point
above), where

(i) we assume that some unspecified Ppkq is known to be true, and

(ii) seek to prove that the next statement Ppk ` 1q must then be true.

The central lesson in completing the “induction step” is to recognize that:

to prove that Ppk ` 1q is true,
one has to start by looking at what Ppk ` 1q says.

In Problem 229 Ppk ` 1q says that

“52pk`1q`2 ´ 24pk ` 1q ´ 25 is divisible by 576”.
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Hence one has to start the induction step with the relevant expression

52pk`1q`2 ´ 24pk ` 1q ´ 25,

and look for some way to rearrange this into a form where one can use Ppkq
(which we assume is already known to be true, and so are free to use).

It is in general a false strategy to work the other way round – by “starting
with Ppkq, and then fiddling with it to try to get Ppk ` 1q”. (This strategy
can be made to work in the simplest cases; but it does not work in general,
and so is a bad habit to get into.) So the induction step should always start
with the hypothesis of Ppk ` 1q.

The next problem invites you to prove the formula for the sum of the angles
in any polygon. The result is well-known; yet we are fairly sure that the
reader will never have seen a correct proof. So the intention here is for you
to recognise the basic character of the result, to identify the flaws in what
you may until now have accepted as a proof, and to try to find some way of
producing a general proof.

Problem 230 Prove by induction the statement:

“for each n ě 3, the angles of any n-gon in the plane have sum
equal to pn´ 2qπ radians.” 4

The formulation certainly involves a parameter n ě 3; so you clearly need
to begin by formulating the statement Ppnq. For the proof to have a chance
of working, finding the right formulation involves a modest twist! So if you
get stuck, it may be worth checking the first couple of lines of the solution.

No matter how Ppn) is formulated, you should certainly know how to prove
the statement Pp3q (essentially the formula for the sum of the angles in a
triangle). But it is far from obvious how to prove the “induction step”:

“if we know that Ppkq is true for some particular k ě 1, then
Ppk ` 1q must also be true”.

When tackling the induction step, we certainly cannot start with Ppkq! The
statement Ppk`1q says something about polygons with k`1 sides: and there
is no way to obtain a typical pk ` 1q-gon by fiddling with some statement
about polygons with k sides. (If you start with a k-gon, you can of course
draw a triangle on one side to get a pk ` 1q-gon; but this is a very special
construction, and there is no easy way of knowing whether all pk`1q-gons can
be obtained in this way from some k-gon.) The whole thrust of mathematical
induction is that we must always start the induction step by thinking about
the hypothesis of Ppk` 1q – that is in this case, by considering an arbitrary
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pk ` 1q-gon and then finding some guaranteed way of “reducing” it in order
to make use of Ppk).

The next two problems invite you to prove some classical algebraic identities.
Most of these may be familiar. The challenge here is to think carefully about
the way you lay out your induction proof, to learn from the examples above,
and (later) to learn from the detailed solutions provided.

Problem 231 Prove by induction the statement:

“1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q “ n2 holds, for all n ě 1”. 4

The summation in Problem 231 was known to the ancient Greeks. The
mystical Pythagorean tradition (which flourished in the centuries after
Pythagoras) explored the character of integers through the ‘spatial figures’
which they formed. For example, if we arrange each successive integer as
a new line of dots in the plane, then the sum “1 ` 2 ` 3 ` ¨ ¨ ¨ ` n” can be
seen to represent a triangular number. Similarly, if we arrange each odd
number 2k ´ 1 in the sum “1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q” as a “k-by-k reverse
L-shape”, or gnomon (a word which we still use to refer to the L-shaped
piece that casts the shadow on a sundial), then the accumulated L-shapes
build up an n by n square of dots – the “1” being the dot in the top left
hand corner, the “3” being the reverse L-shape of 3 dots which make this
initial “1” into a 2 by 2 square, the “5” being the reverse L-shape of 5 dots
which makes this 2 by 2 square into a 3 by 3 square, and so on. Hence the
sum “1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q” can be seen to represent a square number.

There is much to be said for such geometrical illustrations; but there is
no escape from the fact that they hide behind an ellipsis (the three dots
which we inserted in the sum between “5” and “2n ´ 1”, which were
then summarised when arranging the reverse L-shapes by ending with the
words “and so on”). Proof by mathematical induction, and its application
in Problem 231, constitute a formal way of avoiding both the appeal to
pictures, and the hidden ellipsis.

Problem 232 The sequence

2, 5, 13, 35, . . .

is defined by its first two terms u0 “ 2, u1 “ 5, and by the recurrence
relation:

un`2 “ 5un`1 ´ 6un.

(a) Guess a closed formula for the nth term un.

(b) Prove by induction that your guess in (a) is correct for all n ě 0. 4
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Problem 233 The sequence of Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, . . .

is defined by its first two terms F0 “ 0, F1 “ 1, and by the recurrence
relation:

Fn`2 “ Fn`1 ` Fn when n ě 0.

Prove by induction that, for all n ě 0,

Fn “
αn ´ βn
?

5
, where α “

1`
?

5

2
and β “

1´
?

5

2
. 4

Problem 234 Prove by induction that

52n`1 ¨ 2n`2 ` 3n`2 ¨ 22n`1

is divisible by 19, for all n ě 0. 4

Problem 235 Use mathematical induction to prove that each of these
identities holds, for all n ě 1:

(a) 1` 2` 3` ¨ ¨ ¨ ` n “ npn`1q
2

(b) 1
1¨2 `

1
2¨3 `

1
3¨4 ` ¨ ¨ ¨ `

1
npn`1q “ 1´ 1

n`1

(c) 1` q ` q2 ` q3 ` ¨ ¨ ¨ ` qn´1 “ 1
1´q ´

qn

1´q

(d) 0 ¨ 0!` 1 ¨ 1!` 2 ¨ 2!` ¨ ¨ ¨ ` pn´ 1q ¨ pn´ 1q! “ n!´ 1

(e) pcos θ ` i sin θqn “ cosnθ ` i sinnθ. 4

Problem 236 Prove by induction the statement:

“p1` 2` 3` ¨ ¨ ¨ ` nq2 “ 13 ` 23 ` 33 ` ¨ ¨ ¨ ` n3, for all n ě 1”. 4

We now know that, for all n ě 1:

1` 1` 1` ¨ ¨ ¨ ` 1 pn termsq “ n.

And if we sum these “outputs” (that is, the first n natural numbers), we get
the nth triangular number:

1` 2` 3` ¨ ¨ ¨ ` n “
npn` 1q

2
“ Tn.
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The next problem invites you to find the sum of these “outputs”: that is, to
find the sum of the first n triangular numbers.

Problem 237

(a) Experiment and guess a formula for the sum of the first n triangular
numbers:

T1 ` T2 ` T3 ` ¨ ¨ ¨ ` Tn “ 1` 3` 6` ¨ ¨ ¨ `
npn` 1q

2
.

(b) Prove by induction that your guessed formula is correct for all n ě 1. 4

We now know closed formulae for

“1` 2` 3` ¨ ¨ ¨ ` n”

and for

“1 ¨ 2` 2 ¨ 3` 3 ¨ 4` ¨ ¨ ¨ ` pn´ 1qn”.

The next problem hints firstly that these identities are part of something
more general, and secondly that these results allow us to find identities for
the sum of the first n squares:

12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2

for the first n cubes:
13 ` 23 ` 33 ` ¨ ¨ ¨ ` n3

and so on.

Problem 238

(a) Note that

1¨2`2¨3`3¨4`¨ ¨ ¨`npn`1q “ 1¨p1`1q`2¨p2`1q`3¨p3`1q`¨ ¨ ¨`n¨pn`1q.

Use this and the result of Problem 237 to derive a formula for the sum:

12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2.

(b) Guess and prove a formula for the sum

1 ¨ 2 ¨ 3` 2 ¨ 3 ¨ 4` 3 ¨ 4 ¨ 5` ¨ ¨ ¨ ` pn´ 2qpn´ 1qn.

Use this to derive a closed formula for the sum:

13 ` 23 ` 33 ` ¨ ¨ ¨ ` n3. 4
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It may take a bit of effort to digest the statement in the next problem. It
extends the idea behind the “method of undetermined coefficients” that is
discussed in Note 2 to the solution of Problem 237(a).

Problem 239

(a) Given n` 1 distinct real numbers

a0, a1, a2, . . . , an,

find all possible polynomials of degree n which satisfy

fpa0q “ fpa1q “ fpa2q “ ¨ ¨ ¨ “ fpan´1q “ 0, fpanq “ b

for some specified number b.

(b) For each n ě 1, prove the following statement:

Given two labelled sets of n` 1 real numbers

a0, a1, a2, . . . , an,

and
b0, b1, b2, . . . , bn,

where the ai are all distinct (but the bi need not be), there exists a
polynomial fn of degree n, such that

fnpa0q “ b0, fnpa1q “ b1, fnpa2q “ b2, . . . , fnpanq “ bn. 4

We end this subsection with a mixed bag of three rather different induction
problems. In the first problem the induction step involves a simple
construction of a kind we will meet later.

Problem 240 A country has only 3 cent and 4 cent coins.

(a) Experiment to decide what seems to be the largest amount, N cents, that
cannot be paid directly (without receiving change).

(b) Prove by induction that “n cents can be paid directly for each n ą N”.
4

Problem 241

(a) Solve the equation z` 1
z “ 1. Calculate z2, and check that z2` 1

z2 is also
an integer.
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(b) Solve the equation z` 1
z “ 2. Calculate z2, and check that z2` 1

z2 is also
an integer.

(c) Solve the equation z` 1
z “ 3. Calculate z2, and check that z2` 1

z2 is also
an integer.

(d) Solve the equation z ` 1
z “ k, where k is an integer. Calculate z2, and

check that z2 ` 1
z2 is also an integer.

(e) Prove that if a number z has the property that z ` 1
z is an integer, then

zn ` 1
zn is also an integer for each n ě 1. 4

Problem 242 Let p be any prime number. Use induction to prove:

“np ´ n is divisible by p for all n ě 1”. 4

6.4. Infinite geometric series

Elementary mathematics is predominantly about equations and identities.
But it is often impossible to capture important mathematical relations in
the form of exact equations. This is one reason why inequalities become
more central as we progress; another reason is because inequalities allow us
to make precise statements about certain infinite processes.

One of the simplest infinite process arises in the formula for the “sum” of
an infinite geometric series:

1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rn ` ¨ ¨ ¨ pfor everq.

Despite the use of the familiar-looking “+” signs, this can be no ordinary
addition. Ordinary addition is defined for two summands; and by repeating
the process, we can add three summands (thanks in part to the associative
law of addition). We can then add four, or any finite number of summands.
But this does not allow us to “add” infinitely many terms as in the above
sum. To get round this we combine ordinary addition (of finitely many
terms) and simple inequalities to find a new way of giving a meaning to the
above “endless sum”. In Problem 116 you used the factorisation

rn`1 ´ 1 “ pr ´ 1qp1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rnq

to derive the closed formula:

1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rn “
1´ rn`1

1´ r
.
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This formula for the sum of a finite geometric series can be rewritten in the
form

1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rn “
1

1´ r
´
rn`1

1´ r
.

At first sight, this may not look like a clever move! However, it separates
the part that is independent of n from the part on the RHS that depends
on n; and it allows us to see how the second part behaves as n gets large:

when |r| ă 1, successive powers of r get smaller and smaller and
converge rapidly towards 0,

so the above form of the identity may be interpreted as having the form:

1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rn “
1

1´ r
´ pan “error term”q.

Moreover if |r| ă 1, then the “error term” converges towards 0 as nÑ8.

In particular, if 1 ą r ą 0, the error term is always positive, so we have
proved, for all n ě 1:

1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rn ă
1

1´ r

and

the difference between the two sides tends rapidly to 0 as nÑ8.

We then make the natural (but bold) step to interpret this, when |r| ă 1,
as offering a new definition which explains precisely what is meant by the
endless sum

1` r ` r2 ` r3 ` ¨ ¨ ¨ (for ever),

declaring that, when |r| ă 1,

1` r ` r2 ` r3 ` ¨ ¨ ¨ pfor everq “
1

1´ r
.

More generally, if we multiply every term by a, we see that

a` ar ` ar2 ` ar3 ` ¨ ¨ ¨ pfor everq “
a

1´ r
.

Problem 243 Interpret the recurring decimal 0.037037037 ¨ ¨ ¨ (for ever) as
an infinite geometric series, and hence find its value as a fraction. 4
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Problem 244 Interpret the following endless processes as infinite geometric
series.

(a) A square cake is cut into four quarters, with two perpendicular cuts
through the centre, parallel to the sides. Three people receive one quarter
each – leaving a smaller square piece of cake. This smaller piece is then
cut in the same way into four quarters, and each person receives one (even
smaller) piece – leaving an even smaller residual square piece, which is
then cut in the same way. And so on for ever. What fraction of the
original cake does each person receive as a result of this endless process?

(b) I give you a whole cake. Half a minute later, you give me half the cake
back. One quarter of a minute later, I return one quarter of the cake to
you. One eighth of a minute later you return one eighth of the cake to
me. And so on. Adding the successive time intervals, we see that

1

2
`

1

4
`

1

8
` ¨ ¨ ¨ pfor everq “ 1,

so the whole process is completed in exactly 1 minute. How much of the
cake do I have at the end, and how much do you have? 4

Problem 245 When John von Neumann (1903–1957) was seriously ill in
hospital, a visitor tried (rather insensitively) to distract him with the
following elementary mathematics problem.

Have you heard the one about the two trains and the fly? Two
trains are on a collision course on the same track, each travelling
at 30 km/h. A super-fly starts on Train A when the trains are 120
km apart, and flies at a constant speed of 50 km/h – from Train A
to Train B, then back to Train A, and so on. Eventually the two
trains collide and the fly is squashed. How far did the fly travel
before this sad outcome? 4

6.5. Some classical inequalities

The fact that our formula for the sum of a geometric series gives us an exact
sum is very unusual – and hence very precious. For almost all other infinite
series – no matter how natural, or beautiful, they may seem – you can be
fairly sure that there is no obvious exact formula for the value of the sum.
Hence in those cases where we happen to know the exact value, you may
infer that it took the best efforts of some of the finest mathematical minds
to discover what we know.
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One way in which we can make a little progress in estimating the value of
an infinite series is to obtain an inequality by comparing the given sum with
a geometric series.

Problem 246

(a)(i) Explain why
1

32
ă

1

22
,

so
1

22
`

1

32
ă

2

22
“

1

2
.

(ii) Explain why 1
52 ,

1
62 ,

1
72 are all ă 1

42 , so

1

42
`

1

52
`

1

62
`

1

72
ă

4

42
“

1

4
.

(b) Use part (a) to prove that

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
ă 2, for all n ě 1.

(c) Conclude that the endless sum

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
` ¨ ¨ ¨ pfor everq

has a definite value, and that this value lies somewhere between 17
12 and 2.

4

The next problem presents a rather different way of deriving a similar
equality. Once the relevant inequality has been guessed, or given (see
Problem 247(a) and (b)), the proof by mathematical induction is often
relatively straightforward. And after a little thought about Problem 246, it
should be clear that much of the inaccuracy in the general inequality arises
from the rather poor approximations made for the first few terms (when
n “ 1, when n “ 2, when n “ 3, etc.); hence by keeping the first few terms
as they are, and only approximating for n ě 2, or n ě 3, or n ě 4, we can
often prove a sharper result.

Problem 247

(a) Prove by induction that

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
ď 2´

1

n
, for all n ě 1.
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(b) Prove by induction that

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
ă 1.68´

1

n
, for all n ě 4. 4

The infinite sum

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
` ¨ ¨ ¨ pfor everq

is a historical classic, and has many instructive stories to tell. Recall that,
in Problems 54, 62, 63, 236, 237, 238 you found closed formulae for the
sums

1` 2` 3` ¨ ¨ ¨ ` n

12 ` 22 ` 32 ` ¨ ¨ ¨ ` n2

13 ` 23 ` 33 ` ¨ ¨ ¨ ` n3

and for the sums

1ˆ 2` 2ˆ 3` 3ˆ 4` ¨ ¨ ¨ ` pn´ 1qn

1ˆ 2ˆ 3` 2ˆ 3ˆ 4` 3ˆ 4ˆ 5` ¨ ¨ ¨ ` pn´ 2qpn´ 1qn.

Each of these expressions has a “natural” feel to it, and invites us to believe
that there must be an equally natural compact answer representing the sum.
In Problem 235 you took this idea one step further by finding a beautiful
closed expression for the sum

1

1 ¨ 2
`

1

2 ¨ 3
`

1

3 ¨ 4
` ¨ ¨ ¨ `

1

npn` 1q
“ 1´

1

n` 1

When we began to consider infinite series, we found the elegant closed
formula

1` r ` r2 ` r3 ` ¨ ¨ ¨ ` rn “
1

1´ r
´
rn`1

1´ r
.

We then observed that the final term on the RHS could be viewed as an
“error term”, indicating the amount by which the LHS differs from 1

1´r ,
and noticed that, for any given value of r between ´1 and `1, this error
term “tends towards 0 as the power n increases”. We interpreted this as
indicating that one could assign a value to the endless sum

1` r ` r2 ` r3 ` ¨ ¨ ¨ pfor everq “
1

1´ r
.

In the same way, in the elegant closed formula

1

1 ¨ 2
`

1

2 ¨ 3
`

1

3 ¨ 4
` ¨ ¨ ¨ `

1

npn` 1q
“ 1´

1

n` 1
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the final term on the RHS indicates the amount by which the finite sum on
the LHS differs from 1; and since this “error term” tends towards 0 as n
increases, we may assign a value to the endless sum

1

1 ¨ 2
`

1

2 ¨ 3
`

1

3 ¨ 4
` ¨ ¨ ¨ pfor everq “ 1.

It is therefore natural to ask whether other infinite series, such as

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
` ¨ ¨ ¨ pfor everq

may also be assigned some natural finite value. And since the series is purely
numerical (without any variable parameters, such as the “r” in the geometric
series formula), this answer should be a strictly numerical answer. And it
should be exact – though all we have managed to prove so far (in Problems
246 and 247) is that this numerical answer lies somewhere between 17

12 and
1.68.

This question arose naturally in the middle of the seventeenth century,
when mathematicians were beginning to explore all sorts of infinite series
(or “sums that go on for ever”). With a little more work in the spirit of
Problems 246 and 247 one could find a much more accurate approximate
value. But what is wanted is an exact expression, not an unenlightening
decimal approximation. This aspiration has a serious mathematical basis,
and is not just some purist preference for elegance. The actual decimal value
is very close to

1.649934 ¨ ¨ ¨ .

But this conveys no structural information. One is left with no hint as
to why the sum has this value. In contrast, the eventual form of the exact
expression suggests connections whose significance remains of interest to this
day.

The greatest minds of the seventeenth and early eighteenth century tried
to find an exact value for the infinite sum – and failed. The problem
became known as the Basel problem (after Jakob Bernoulli (1654–1705) who
popularised the problem in 1689 – one of several members of the Bernoulli
family who were all associated with the University in Basel). The problem
was finally solved in 1735 – in truly breathtaking style – by the young
Leonhard Euler (1707–1783) (who was at the time also in Basel). The answer

π2

6

illustrates the final sentence of the preceding paragraph in unexpected ways,
which we are still trying to understand.
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In the next problem you are invited to apply similar ideas to an even more
important series. Part (a) provides a relatively crude first analysis. Part
(b) attacks the same question; but it does so using algebra and induction
(rather than the formula for the sum of a geometric series) in a way that is
then further refined in part (c).

Problem 248

(a)(i) Choose a suitable r and prove that

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ă 1` r ` r2 ` ¨ ¨ ¨ ` rn´1 ă 2.

(ii) Conclude that

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ă 3, for every n ě 0,

and hence that the endless sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
` ¨ ¨ ¨ pfor everq

can be assigned a value “e” satisfying 2 ă e ď 3.

(b)(i) Prove by induction that

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ď 3´

1

n.n!
, for all n ě 1.

(ii) Use part (i) to conclude that the endless sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
` ¨ ¨ ¨ pfor everq

can be assigned a definite value “e”, and that this value lies somewhere
between 2.5 and 3.

(c) (It may help to read the Note at the start of the solution to part (c)
before attempting parts (c), (d).)

(i) Prove by induction that

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ď 2.75´

1

n.n!
, for all n ě 2.

(ii) Use part (i) to conclude that the endless sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
` ¨ ¨ ¨ pfor everq
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can be assigned a definite value “e”, and that this value lies somewhere
between 2.6 and 2.75.

(d)(i) Prove by induction that

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ď 2.722 ¨ ¨ ¨ pfor everq ´

1

n.n!
, for all n ě 3.

(ii) Use part (i) to conclude that the endless sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
` ¨ ¨ ¨ pfor everq

can be assigned a definite value “e”, and that this value lies somewhere
between 2.708 and 2.7222 ¨ ¨ ¨ (for ever). 4

We end this section with one more inequality in the spirit of this section, and
two rather different inequalities whose significance will become clear later.

Problem 249 Prove by induction that

1?
1
` 1?

2
` 1?

3
` ¨ ¨ ¨ ` 1?

n
ě
?
n, for all n ě 1. 4

Problem 250 Let a, b be real numbers such that a ‰ b, and a ` b ą 0.
Prove by induction that

2n´1pan ` bnq ě pa` bqn, for all n ě 1. 4

Problem 251 Let x be any real number ě ´1. Prove by induction that

p1` xqn ě 1` nx, for all n ě 1. 4

6.6. The harmonic series

The great foundation of mathematics is
the principle of contradiction, or of identity,

that is to say that a statement
cannot be true and false at the same time,

and that thus A is A, and cannot be not A.
And this single principle is enough to prove

the whole of arithmetic and the whole of geometry,
that is to say all mathematical principles.

Gottfried W. Leibniz (1646–1716)
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We have seen how some infinite series, or sums that go on for ever, can be
assigned a finite value for their sum:

1` r ` r2 ` r3 ` ¨ ¨ ¨ pfor everq “
1

1´ r

1

1 ¨ 2
`

1

2 ¨ 3
`

1

3 ¨ 4
` ¨ ¨ ¨ `

1

npn` 1q
` ¨ ¨ ¨ pfor everq “ 1

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
` ¨ ¨ ¨ pfor everq “

π2

6

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
` ¨ ¨ ¨ pfor everq “ e.

We say that these series converge (meaning that they can be assigned a finite
value).

This section is concerned with another very natural series, the so-called
harmonic series

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

n
` ¨ ¨ ¨ pfor everq.

It is not entirely clear why this is called the harmonic series. The natural
overtones that arise in connection with plucking a stretched string (as with
a guitar or a harp) have wavelengths that are 1

2 the basic wavelength, or 1
3

of the basic wavelength, and so on. It is also true that, just as each term
of an arithmetic series is the arithmetic mean of its two neighbours, and
each term of a geometric series is the geometric mean of its two neighbours,
so each term of the harmonic series after the first is equal to the harmonic
mean (see Problems 85, 89) of its two neighbours:

1

k
“

2
´

1
k´1

¯´1

`

´

1
k`1

¯´1 .

Unlike the first two series above, there is no obvious closed formula for the
finite sum

sn “
1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

n
.

Certainly the sequence of successive sums

s1 “ 1, s2 “
3

2
, s3 “

11

6
, s4 “

25

12
, s5 “

137

60
, . . .

does not suggest any general pattern.
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Problem 252 Suppose we denote by S the “value” of the endless sum

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

n
` ¨ ¨ ¨ (for ever)

(i) Write out the endless sum corresponding to “ 1
2S”.

(ii) Remove the terms of this endless sum from the endless sum S, to obtain
another endless sum corresponding to “S ´ 1

2S” “ 1
2S.

(iii) Compare the first term of the series in (i) (namely 1
2 ) with the first term

in the series in (ii) (namely 1); compare the second term in the series in (i)
with the second term in the series in (ii); and so on. What do you notice?

4

The Leibniz quotation above emphasizes that the reliability of mathematics
stems from a single principle – namely the refusal to tolerate a contradiction.
We have already made explicit use of this principle from time to time (see, for
example, the solution to Problem 125). The message is simple: whenever we
hit a contradiction, we know that we have “gone wrong” – either by making
an error in calculation or logic, or by beginning with a false assumption. In
Problem 252 the observations you were expected to make are paradoxical:
you obtained two different series, which both correspond to “ 1

2S”, but every
term in one series is larger than the corresponding term in the other! What
one can conclude may not be entirely clear. But it is certainly clear that
something is wrong: we have somehow created a contradiction. The three
steps ((i), (ii), (iii)) appear to be relatively sensible. But the final observation
“ 1
2S ă

1
2S” (since 1

2 ă 1, 1
4 ă

1
3 , etc.) makes no sense. And the only obvious

assumption we have made is to assume that the endless sum

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

n
` ¨ ¨ ¨ (for ever)

can be assigned a value “S”, which can then be manipulated as though it
were a number.

The conclusion would seem to be that, whether or not the endless sum has
a meaning, it cannot be assigned a value in this way. We say that the series
diverges. Each finite sum

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

n

has a value, and these values “grow more and more slowly” as n increases:

• the first term immediately makes the sum “ 1

• it takes 4 terms to obtain a sum ą 2;

• it takes 11 terms to obtain a sum ą 3; and
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• it takes 12 367 terms before the series reaches a sum ą 10.

However, this slow growth is not enough to guarantee that the corresponding
endless sum corresponds to a finite numerical value.

The danger signals should already have been apparent in Problem 249,
where you proved that

1
?

1
`

1
?

2
`

1
?

3
` ¨ ¨ ¨ `

1
?
n
ě
?
n

The nth term 1?
n

tends to 0 as n increases; so the finite sums grow ever

more slowly as n increases. However, the LHS can be made larger than any
integer K simply by taking K2 terms. Hence there is no way to assign a
finite value to the endless sum

1
?

1
`

1
?

2
`

1
?

3
` ¨ ¨ ¨ `

1
?
n
` ¨ ¨ ¨ pfor everq.

Problem 253

(a)(i) Explain why
1

2
`

1

3
ă 1.

(ii) Explain why
1

4
`

1

5
`

1

6
`

1

7
ă 1.

(iii) Extend parts (i) and (ii) to prove that

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

2n ´ 1
ă n, for all n ě 2.

(iv) Finally use the fact that, when n ě 3,

1

2n
ă

1

2
´

1

3

to modify the proof in (iii) slightly, and hence show that

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

2n
ă n, for all n ě 3.

(b)(i) Explain why
1

3
`

1

4
ą

1

2
.
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(ii) Explain why
1

5
`

1

6
`

1

7
`

1

8
ą

1

2
.

(iii) Extend parts (i) and (ii) to prove that

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

2n
ą 1`

n

2
, for all n ě 2.

(c) Combine parts (a) and (b) to show that, for all n ě 2, we have the two
inequalities

1`
n

2
ă

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

2n
ă n.

Conclude that the endless sum

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

n
` ¨ ¨ ¨ (for ever)

cannot be assigned a finite value. 4

The result in Problem 253(c) has an unexpected consequence.

Problem 254 Imagine that you have an unlimited supply of identical
rectangular strips of length 2. (Identical empty plastic CD cases can serve as
a useful illustration, provided one focuses on their rectangular side profile,
rather than the almost square frontal cross-section.) The goal is to construct
a ‘stack’ in such a way as to stick out as far as possible beyond a table edge.
One strip balances exactly at its midpoint, so can protrude a total distance
of 1 without tipping over.

(a) Arrange a stack of n strips of length 2, one on top of the other, with
the bottom strip protruding distance 1

n beyond the edge of the table, the
second strip from the bottom protruding 1

n´1 beyond the leading edge of

the bottom strip, the third strip from the bottom protruding 1
n´2 beyond

the leading edge of the strip below it, and so on until the pn ´ 1qth strip
from the bottom protrudes distance 1

2 beyond the leading edge of the strip
below it, and the top strip protrudes distance 1 beyond the leading edge
of the strip below it (see Figure 10). Prove that a stack of n identical
strips arranged in this way will just avoid tipping over the table edge.

(b) Conclude that we can choose n so that an arrangement of n strips can (in
theory) protrude as far beyond the edge of the table as we wish – without
tipping. 4

The next problem illustrates, in the context of the harmonic series, what is in
fact a completely general phenomenon: an endless sum of steadily decreasing
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Figure 10: Overhanging strips, n “ 10.

positive terms may converge or diverge; but provided the terms themselves
converge to 0, then the the corresponding “alternating sum” – where the
same terms are combined but with alternately positive and negative signs –
always converges.

Problem 255

(a) Let

sn “
1

1
´

1

2
`

1

3
´

1

4
`

1

5
´ ¨ ¨ ¨ ˘

1

n

(where the final operation is “`” if n is odd and “´” if n is even).

(i) Prove that
s2n´2 ă s2n ă s2m`1 ă s2m´1,

for all m,n ě 1.

(ii) Conclude that the endless alternating sum

1

1
´

1

2
`

1

3
´

1

4
`

1

5
´ ¨ ¨ ¨ (for ever)

can be assigned a value s that lies somewhere between s6 “
37
60 and

s5 “
47
60 .

(b) Let
a1, a2, a3, . . .

be an endless, decreasing sequence of positive terms (that is, an`1 ă an
for all n ě 1). Suppose that the sequence of terms an converges to 0 as
nÑ8.
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(i) Let
sn “ a1 ´ a2 ` a3 ´ a4 ` a5 ´ ¨ ¨ ¨ ˘ an

(where the final operation is “`” if n is odd and “´” if n is even). Prove
that

s2n´2 ă s2n ă s2m`1 ă s2m´1, for all m,n ě 1.

(ii) Conclude that the endless alternating sum

a1 ´ a2 ` a3 ´ a4 ` a5 ´ ¨ ¨ ¨ (for ever)

can be assigned a value s that lies somewhere between s2 “ a1´a2 and
s3 “ a1 ´ a2 ` a3. 4

Just as with the series

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
` ¨ ¨ ¨ pfor everq

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
` ¨ ¨ ¨ pfor everq,

we can show relatively easily that

1

1
´

1

2
`

1

3
´

1

4
`

1

5
´ ¨ ¨ ¨ pfor everq

can be assigned a value s. It is far less clear whether this value has a
familiar name! (It is in fact equal to the natural logarithm of 2: “loge 2”.)
A similarly intriguing series is the alternating series of odd terms from the
harmonic series:

1

1
´

1

3
`

1

5
´

1

7
`

1

9
´ ¨ ¨ ¨ pfor everq

You should be able to show that this endless series can be assigned a value
somewhere between s2 “

2
3 and s3 “

13
15 ; but you are most unlikely to guess

that its value is equal to π
4 . This was first discovered in 1674 by Leibniz

(1646–1716). One way to obtain the result is using the integral of p1`x2q´1

from 0 to 1: on the one hand the integral is equal to arctanx evaluated when
x “ 1 (that is, π

4 ); on the other hand, we can expand the integrand as a
power series 1´ x2 ` x4 ´ x6 ` ¨ ¨ ¨ , integrate term by term, and prove that
the resulting series converges when x “ 1. (It does indeed converge, though
it does so very, very slowly.)

The fact that the alternating harmonic series has the value loge 2 seems to
have been first shown by Euler (1707–1783), using the power series expansion
for logp1` xq.
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6.7. Induction in geometry, combinatorics and number
theory

We turn next to a mixed collection of problems designed to highlight a range
of applications.

Problem 256 Let f1 “ 2, fk`1 “ fkpfk ` 1q. Prove by induction that fk
has at least k distinct prime factors. 4

Problem 257

(a) Prove by induction that n points on a straight line divide the line into
n` 1 parts.

(b)(i) By experimenting with small values of n, guess a formula Rn for the
maximum number of regions which can be created in the plane by an
array of n straight lines.

(ii) Prove by induction that n straight lines in the plane divide the plane
into at most Rn regions.

(c)(i) By experimenting with small values of n, guess a formula Sn for the
maximum number of regions which can be created in 3-dimensions by
an array of n planes.

(ii) Prove by induction that n planes in 3-dimensions divide space into at
most Sn regions. 4

Problem 258 Given a square, prove that, for each n ě 6, the initial square
can be cut into n squares (of possibly different sizes). 4

Problem 259 A tree is a connected graph, or network, consisting of vertices
and edges, but with no cycles (or circuits). Prove that a tree with n vertices
has exactly n´ 1 edges. 4

The next problem concerns spherical polyhedra. A spherical polyhedron is a
polyhedral surface in 3-dimensions, which can be inflated to form a sphere
(where we assume that the faces and edges can stretch as required). For
example, a cube is a spherical polyhedron; but the surface of a picture frame
is not. A spherical polyhedron has

• faces (flat 2-dimensional polygons, which can be stretched to take the form
of a disc),



312 Infinity: recursion, induction, infinite descent

• edges (1-dimensional line segments, where exactly two faces meet), and

• vertices (0-dimensional points, where several faces and edges meet, in such
a way that they form a single cycle around the vertex).

Each face must clearly have at least 3 edges; and there must be at least three
edges and three faces meeting at each vertex.

If a spherical polyhedron has V vertices, E edges, and F faces, then the
numbers V , E, F satisfy Euler’s formula

V ´ E ` F “ 2.

For example, a cube has V “ 8 vertices, E “ 12 edges, and F “ 6 faces, and
8´ 12` 6 “ 2.

Problem 260

(a)(i) Describe a spherical polyhedron with exactly 6 edges.

(ii) Describe a spherical polyhedron with exactly 8 edges.

(b) Prove that no spherical polyhedron can have exactly 7 edges.

(c) Prove that for every n ě 8, there exists a spherical polyhedron with n
edges. 4

Problem 261 A map is a (finite) collection of regions in the plane, each
with a boundary, or border, that is ‘polygonal’ in the sense that it consists
of a single sequence of distinct vertices and – possibly curved – edges, that
separates the plane into two parts, one of which is the polygonal region itself.
A map can be properly coloured if each region can be assigned a colour
so that each pair of neighbouring regions (sharing an edge) always receive
different colours. Prove that the regions of such a map can be properly
coloured with just two colours if and only if an even number of edges meet
at each vertex. 4

Problem 262 (Gray codes) There are 2n sequences of length n consisting
of 0s and 1s. Prove that, for each n ě 2, these sequences can be arranged
in a cyclic list such that any two neighbouring sequences (including the last
and the first) differ in exactly one coordinate position. 4
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Problem 263 (Calkin-Wilf tree) The binary tree in the plane has a
distinguished vertex as ‘root’, and is constructed inductively. The root is
joined to two new vertices; and each new vertex is then joined to two further
new vertices – with the construction process continuing for ever (Figure 11).

Label the vertices of the binary tree with positive fractions as follows:

• the root is given the label 1
1

• whenever we know the label i
j of a ‘parent’ vertex, we label its ‘left

descendant’ as i
i`j , and its ‘right descendant’ i`jj .

(a) Prove that every positive rational rs occurs once and only once as a label,
and that it occurs in its lowest terms.

(b) Prove that the labels are left-right symmetric in the sense that labels in
corresponding left and right positions are reciprocals of each other. 4

Problem 264 A collection of n intervals on the x-axis is such that every
pair of intervals have a point in common. Prove that all n intervals must
then have at least one point in common. 4

6.8. Two problems

Problem 265 Several identical tanks of water sit on a horizontal base. Each
pair of tanks is connected with a pipe at ground level controlled by a valve,
or tap. When a valve is opened, the water level in the two connected tanks
becomes equal (to the average, or mean, of the initial levels). Suppose we
start with tank T which contains the least amount of water. The aim is to
open and close valves in a sequence that will lead to the final water level
in tank T being as high as possible. In what order should we make these
connections? 4

Figure 11: A (rooted) binary tree.
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Problem 266 I have two flasks. One is ‘empty’, but still contains a residue
of a dangerous chemical; the other contains a fixed amount of solvent that
can be used to wash away the remaining traces of the dangerous chemical.
What is the best way to use the fixed quantity of solvent? Should I use it all
at once to wash out the first flask? Or should I first wash out the flask using
just half of the solvent, and then repeat with the other half? Or is there a
better way of using the available solvent to remove as much as possible of
the dangerous chemical? 4

6.9. Infinite descent

In this final section we touch upon an important variation on mathematical
induction. This variation is well-illustrated by the next (probably familiar)
problem.

Problem 267 Write out for yourself the following standard proof that
?

2
is irrational.

(i) Suppose to the contrary that
?

2 is rational. Then
?

2 “ m
n for some

positive integers m, n. Prove first that m must be even.

(ii) Write m “ 2m1 , where m1 is also an integer. Show that n must also be
even.

(iii) How does this lead to a contradiction? 4

Problem 267 has the classic form of a proof which reaches a contradiction
by infinite descent.

1. We start with a claim which we wish to prove is true. Often when we
do not know how to begin, it makes sense to ask what would happen
if the claim were false. This then guarantees that there must be some
counterexample, which satisfies the given hypothesis, but which fails
to satisfy the asserted conclusion.

2. Infinite descent becomes an option whenever each such
counterexample gives rise to some positive integer parameter n
(such as the denominator in Problem 267(i)).

3. Infinite descent becomes a reality, if one can prove that the existence
of the initial counterexample leads to a construction that produces
a counterexample with a smaller value n1 of the parameter n, since
repeating this step then gives rise to an endlessly decreasing sequence

n ą n1 ą n2 ą ¨ ¨ ¨ ą 0
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of positive integers, which is impossible (since such a chain can have
length at most n).

4. Hence the initial assumption that the claim was false must itself be
false – so the claim must be true (as required).

Proof by “infinite descent” is an invaluable tool. But it is important to
realise that the method is essentially a variation on proof by mathematical
induction. As a first step in this direction it is worth reinterpreting Problem
267 as an induction proof.

Problem 268 Let Ppnq be the statement:

“
?

2 cannot be written as a fraction with positive denominator ď n”.

(i) Explain why Pp1q is true.

(ii) Suppose that Ppkq is true for some k ě 1. Use the proof in Problem 267
to show that Ppk ` 1q must then be true as well.

(iii) Conclude that Ppnq is true for all n ě 1, whence
?

2 must be irrational.4

Problem 268 shows that, in the particular case of Problem 267 one can
translate the standard proof that “

?
2 is irrational” into a proof by induction.

But much more is true. The contradiction arising in step 3. above is an
application of an important principle, namely

The Least Element Principle: Every non-empty set S of
positive integers has a smallest element.

The Least Element Principle is equivalent to The Principle of Mathematical
Induction which we stated at the beginning of the chapter:

The Principle of Mathematical Induction: If a subset S of
the positive integers

• contains the integer “1”, and has the property that

• whenever an integer k is in the set S, then the next integer k`1
is always in S too,

then S contains all positive integers.
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Problem 269

(a) Assume the Least Element Principle. Suppose a subset T of the positive
integers contains the integer “1”, and that whenever k is in the set T , then
k ` 1 is also in the set T . Let S be the set of all positive integers which
are not in the set T . Conclude that S must be empty, and hence that T
contains all positive integers.

(b) Assume the Principle of Mathematical Induction. Let T be a non-empty
set of positive integers, and suppose that T does not have a smallest
element. Let S be the set of all positive integers which do not belong
to the set T . Prove that “1” must belong to S, and that whenever the
positive integer k belongs to S, then so does k`1. Derive the contradiction
that T must be empty, contrary to assumption. Conclude that T must in
fact have a smallest element. 4

To round off this final chapter you are invited to devise a rather different
proof of the irrationality of

?
2.

Problem 270 This sequence of constructions presumes that we know – for
example, by Pythagoras’ Theorem – that, in any square OPQR, the ratio

“diagonal : side” “ OQ : OP “
?

2 : 1.

Let OPQR be a square. Let the circle with centre Q and passing through
P meet OQ at P 1. Construct the perpendicular to OQ at P 1, and let this
meet OR at Q1.

(i) Explain why OP 1 “ P 1Q1. Construct the point R1 to complete the square
OP 1Q1R1.

(ii) Join QQ1. Explain why P 1Q1 “ RQ1.

(iii) Suppose OQ : OP “ m : n. Conclude that OQ1 : OP 1 “ 2n´m : m´ n.

(iv) Prove that n ă m ă 2n, and hence that 0 ă m´ n ă n, 0 ă 2n´m.

(v) Explain how, if m, n can be chosen to be positive integers, the above
sequence of steps sets up an “infinite descent” – which is impossible. 4
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6.10. Chapter 6: Comments and solutions

Note: It is important to separate the underlying idea of “induction” from the
formal way we have chosen to present proofs. As ever in mathematics, the ideas
are what matter most. But the process of struggling with (and slowly coming to
understand why we need) the formal structure behind the written proofs is part
of the way the ideas are tamed and organised.

Readers should not be intimidated by the physical extent of the solutions to this
chapter. As explained in the main text it is important for all readers to review the
way they approach induction proofs: so we have erred in favour of completeness
– knowing that as each reader becomes more confident, s/he will increasingly
compress, or abbreviate, some of the steps.

228.

(a) Yes.

(b) Yes.
2ˆ 3ˆ 5ˆ 7ˆ 11` 1 “ 2311,

and
?

2311 “ 48.07 . . . , so we only need to check prime factors up to 47.

(c) No.
2ˆ 3ˆ 5ˆ 7ˆ 11ˆ 13` 1 “ 30 031,

and
?

30 031 “ 173.29 . . . so we might have to check all 40 possible prime factors
up to 173. However, we only have to start at 17 [Why?], and checking with a
calculator is very quick. In fact 30 031 factorises rather prettily as 59ˆ 509.

229. Note: The statement in the problem includes the quantifier “for all n ě 1”.

What is to be proved is the compound statement

“Ppnq is true for all n ě 1”.

In contrast, each individual statement Ppnq refers to a single value of n.

It is essential to be clear when you are dealing with the compound statement, and
when you are referring to some particular statement Pp1q, or Ppnq, or Ppkq.

Let Ppnq be the statement:

“52n`2
´ 24n´ 25 is divisible by 576”.

• Pp1q is the statement:

“54
´ 24ˆ 1´ 25 is divisible by 576”.

That is:

“625´ 49 “ 576 is divisible by 576”,

which is evidently true.
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• Now suppose that we know Ppkq is true for some k ě 1. We must show that
Ppk ` 1q is then also true.

To prove that Ppk ` 1q is true, we have to consider the statement Ppk ` 1q. It
is no use starting with Ppkq. However, since we know that Ppk) is true, we are
free to use it at any stage if it turns out to be useful.

To prove that Ppk ` 1q is true, we have to show that

“52pk`1q`2
´ 24pk ` 1q ´ 25 is divisible by 576”.

So we must start with 52pk`1q`2
´24pk`1q´25 and try to “simplify” it (knowing

that “simplify” in this case means “rewrite it in a way that involves 52k`2
´24k´

25”).

52pk`1q`2
´ 24pk ` 1q ´ 25

“ r52k`4
s ´ 24k ´ 24´ 25

“ r52
p52k`2

´ 24k ´ 25q ` 52
¨ p24kq ` 52

¨ 25s

´ 24k ´ p24` 25q

“ 52
p52k`2

´ 24k ´ 25q ` rp52
´ 1q ˆ p24kqs

` r52
ˆ 25´ 24´ 25s

“ 52
p52k`2

´ 24k ´ 25q ` 242k ` r52
ˆ 25´ 24´ 25s

“ 52
p52k`2

´ 24k ´ 25q ` 242k ` r54
´ 24´ 25s.

The first term on the RHS is a multiple of p52k`2
´ 24k´ 25q, so is divisible by

576 (since we know that Ppkq is true); the second term on the RHS is a multiple
of 242

“ 576; and the third term on the RHS is the expression arising in Pp1q,
which we saw is equal to 576.
6 the whole RHS is divisible by 576
6 the LHS is divisible by 576, so Ppk ` 1q is true.

Hence

• Pp1q is true; and

• whenever Ppkq is true for some k ě 1, we have proved that Ppk ` 1q must be
true.

6 Ppnq is true for all n ě 1. QED

230. Let Ppnq be the statement:

“the angles of any p-gon, for any value of p with 3 ď p ď n, have sum
exactly pp´ 2qπ radians”.

1. Pp3q is the statement:

“the angles of any triangle have sum π radians”.

This is a known fact: given triangle 4ABC, draw the line XAY through A
parallel to BC, with X on the same side of AC as B and Y on the same
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side of AB as C. Then =XAB “ =CBA and =Y AC “ =BCA (alternate
angles), so

=B `=A`=C “ =XAB `=A`=Y AC “ =XAY “ π.

2. Now we suppose that Ppkq is known to be true for some k ě 3. We must
show that Ppk ` 1q is then necessarily true.

To prove that Ppk ` 1q is true, we have to consider the statement Ppk ` 1q: that
is,

“the angles of a p-gon, for any value of p with 3 ď p ď k ` 1, have sum
exactly pp´ 2qπ radians”.

This can be reworded by splitting it into two parts:

“the angles of any p-gon for 3 ď p ď k have sum exactly pp ´ 2qπ
radians;”

and

“the angles of any pk`1q-gon have sum exactly ppk`1q´2qπ radians”.

The first part of this revised version is precisely the statement Ppkq, which we
suppose is known to be true. So the crux of the matter is to prove the second part
– namely that the angles of any pk ` 1q-gon have sum pk ´ 1qπ.

Let A0A1A2 ¨ ¨ ¨Ak be any pk ` 1q-gon.

[Note: The usual move at this point is to say “draw the chord AkA1 to cut the

polygon into the triangle AkA1A0 (with angle sum π (by Pp3q), and the k-gon
A1A2 ¨ ¨ ¨Ak (with angle sum pk ´ 2qπ (by Ppkq), whence we can add to see that
A0A1A2 ¨ ¨ ¨Ak has angle sum ppk ` 1q ´ 2qπ. However, this only works

• if the triangle AkA1A0 “sticks out” rather than in, and

• if no other vertices or edges of the pk` 1q-gon encroach into the part that is cut
off – which can only be guaranteed if the polygon is “convex”.

So what is usually presented as a “proof” does not work in general.

If we want to prove the general result – for polygons of all shapes – we have to get
round this unwarranted assumption. Experiment may persuade you that “there is
always some vertex that sticks out and which can be safely “cut off”; but it is not
at all clear how to prove this fact (we know of no simple proof). So we have to
find another way.]

Consider the vertex A1, and its two neighbours A0 and A2.

Imagine each half-line, which starts at A1, and which sets off into the interior
of the polygon. Because the polygon is finite, each such half-line defines a line
segment A1X, where X is the next point of the polygon which the half line hits
(that is, X is one of the vertices Am, or a point on one of the sides AmAm`1).

Consider the locus of all such points X as the half line swings from A1A0

(produced) to A1A2 (produced). There are two possibilities: either
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(a) these points X all belong to a single side of the polygon; or

(b) they don’t.

(a) In the first case none of the vertices or sides of the polygon A0A1A2 ¨ ¨ ¨Ak
intrude into the interior of the triangle A0A1A2, so the chord A0A2 separates the
pk ` 1q-gon A0A1A2 ¨ ¨ ¨Ak into a triangle A0A1A2 and a k-gon A0A2A3 ¨ ¨ ¨Ak.
The angle sum of A0A1A2 ¨ ¨ ¨Ak is then equal to the sum of (i) the angle sum of
the triangle A0A1A2 and (ii) the angle sum of A0A2A3 ¨ ¨ ¨Ak – which are equal
to π and pk ´ 2qπ respectively (by Ppkq). So the angle sum of the pk ` 1q-gon
A0A2A3 ¨ ¨ ¨Ak is equal to ppk ` 1q ´ 2qπ as required.

(b) In the second case, as the half-line A1X rotates from A1A0 to A1A2, the point
X must at some instant switch from lying on one side of the polygon to lying
on another side; at the very instant where X switches sides, X “ Am must be
a vertex of the polygon.

Because of the way the point X was chosen, the chord A1X “ A1Am does
not meet any other point of the pk ` 1q-gon A0A1A2 ¨ ¨ ¨Ak, and so splits the
pk ` 1q-gon into an m-gon A1A2A3 ¨ ¨ ¨Am (with angle sum pm ´ 2qπ by Ppkq)
and a pk´m` 3q-gon AmAm`1Am`2 ¨ ¨ ¨AkA0A1 (with angle sum pk´m` 1qπ
by Ppkq). So the pk ` 1q-gon A0A1A2 ¨ ¨ ¨Ak has angle sum ppk ` 1q ´ 2qπ as
required.

Hence Ppk ` 1q is true.

6 Ppnq is true for all n ě 3. QED

231. Let Ppnq be the statement

1` 3` 5` ¨ ¨ ¨ ` p2n´ 1q “ n2.

• LHS of Pp1q “ 1; RHS of Pp1q “ 12. Since these two are equal, Pp1q is true.

• Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

1` 3` 5` ¨ ¨ ¨ ` p2k ´ 1q “ k2.

We wish to prove that Ppk ` 1q must then be true.

Now Ppk ` 1q is an equation, so we start with the LHS of Ppk ` 1q and try to
simplify it in an appropriate way to get the RHS of Ppk ` 1q:

LHS of Ppk ` 1q “ 1` 3` 5` ¨ ¨ ¨ ` p2pk ` 1q ´ 1q

“ p1` 3` 5` ¨ ¨ ¨ ` p2k ´ 1qq ` p2k ` 1q.

If we now use Ppkq, which we are supposing to be true, then the first bracket is
equal to k2, so this sum is equal to:

“ k2 ` p2k ` 1q

“ pk ` 1q2

“ RHS of Ppk ` 1q.

Hence Ppk ` 1q holds.
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Combining these two bullet points then shows that “Ppnq holds, for all n ě 1”.
QED

232.

(a) The only way to learn is by trying and failing; then trying again and failing
slightly better! So don’t give up too quickly. It is natural to try to relate each
term to the one before. You may then notice that each term is slightly less than
3 times the previous term.

(b) Note: The recurrence relation for un involves the two previous terms. So when
we assume that Ppkq is known to be true and try to prove Ppk`1q, the recurrence
relation for uk`1 will involve uk and uk´1, so Ppnq needs to be formulated to
ensure that we can use closed expressions for both these terms. For the same
reason, the induction proof has to start by showing that both Pp0q and Pp1q
are true.

Let Ppnq be the statement:

“um “ 2m ` 3m for all m, 0 ď m ď n”.

‚ LHS of Pp0q “ u0 “ 2; RHS of Pp0q “ 20
` 30

“ 1 ` 1. Since these two are
equal, Pp0q is true.

Pp1q combines Pp0q, and the equality of u1 “ 5 and 21
` 31; since these two

are equal, Pp1q is true.

‚ Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

“um “ 2m ` 3m for all m, 0 ď m ď k.”

We wish to prove that Ppk ` 1q must then be true.

Now Ppk ` 1q requires us to prove that

“um “ 2m ` 3m for all m, 0 ď m ď k ` 1.”

Most of this is guaranteed by Ppkq, which we assume to be true. It remains
for us to check that the equality holds for uk`1. We know that

uk`1 “ 5uk ´ 6uk´1.

And we may use Ppk), which we are supposing to be true, to conclude that:

uk`1 “ 5
´

2k ` 3k
¯

´ 6
´

2k´1
` 3k´1

¯

“ p10´ 6q2k´1
` p15´ 6q3k´1

“ 2k`1
` 3k`1.

Hence Ppk ` 1q holds.

Combining these two bullet points then shows that “Ppnq holds, for all n ě 0”.

QED
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233. Let Ppnq be the statement:

“Fm “
αm´βm
?
5

for all m, 0 ď m ď n”,

where α “ 1`
?
5

2
and β “ 1´

?
5

2
.

• LHS of Pp0q “ F0 “ 0; RHS of Pp0q “ 1´1?
5
“ 0. Since these two are equal,

Pp0q is true.

LHS of Pp1q “ F1 “ 1; RHS of Pp1q “ α´β
?
5
“ 1. Since these two are equal,

Pp1q is true.

• Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

“Fm “
αm´βm
?
5

for all m, 0 ď m ď k.”

We wish to prove that Ppk ` 1q must then be true.

Now Ppk ` 1q requires us to prove that

“Fm “
αm´βm
?
5

for all m, 0 ď m ď k ` 1.”

Most of this is guaranteed by Ppkq, which we assume to be true. It remains to
check this for Fk`1. We know that

Fk`1 “ Fk ` Fk´1.

And we may use Ppkq, which we are supposing to be true to conclude that:

Fk`1 “
αk ´ βk
?

5
`
αk´1

´ βk´1

?
5

“
αk ` αk´1

?
5

´
βk ` βk´1

?
5

“
αk`1

´ βk`1

?
5

(since α and β are roots of the equation x2 ´ x´ 1 “ 0)

Hence Ppk ` 1q holds.

Combining these two bullet points then shows that “Ppnq holds, for all n ě 1”.
QED

Note: You may understand the above solution and yet wonder how such a formula
could be discovered. The answer is fairly simple. There is a general theory about
linear recurrence relations which guarantees that the set of all solutions of a second
order recurrence (that is, a recurrence in which each term depends on the two
previous terms) is “two dimensional” (that is, it is just like the familiar 2D plane,
where every vector pp, qq is a combination of the two “base vectors” p1, 0q and
p0, 1q:

pp, qq “ pp1, 0q ` qp0, 1qq.

Once we know this, it remains:
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• to find two special solutions (like the vectors p1, 0q and p0, 1q in the plane), which
we do here by looking for sequences of the form “1, x, x2, x3, . . . ” that satisfy
the recurrence, which implies that 1` x “ x2, so x “ α, or x “ β;

• then to choose a linear combination Fm “ pαm ` qβm of these two power
solutions to give the correct first two terms: 0 “ F0 “ p` q, 1 “ F1 “ pα` qβ,
so p “ 1?

5
, q “ ´ 1?

5
.

234. Let Ppnq be the statement:

“52n`1
¨ 2n`2

` 3n`2
¨ 22n`1 is divisible by 19”.

• Pp0q is the statement: “5ˆ 4` 9ˆ 2 is divisible by 19”, which is true.

• Now suppose that we know that Ppkq is true for some k ě 0. We must show
that Ppk ` 1q is then also true.

To prove that Ppk ` 1q is true, we have to show that

“52k`3
¨ 2k`3

` 3k`3
¨ 22k`3 is divisible by 19”.

52k`3
¨ 2k`3

` 3k`3
¨ 22k`3

“ 52
¨ 2

´

52k`1
¨ 2k`2

` 3k`2
¨ 22k`1

¯

´ 52
¨ 2 ¨ 3k`2

¨ 22k`1
` 3k`3

¨ 22k`3

“ 52
¨ 2 ¨

´

52k`1
¨ 2k`2

` 3k`2
¨ 22k`1

¯

´
`

52
´ 3 ¨ 2

˘

3k`2
¨ 22k`2.

The bracket in the first term on the RHS is divisible by 19 (by Ppkq), and the
bracket in the second term is equal to 19. Hence both terms on the RHS are
divisible by 19, so the RHS is divisible by 19. Therefore the LHS is also divisible
by 19, so Ppk ` 1q is true.

6 Ppnq is true for all n ě 0. QED

235.

Note: The proofs of identities such as those in Problem 235, which are given
in many introductory texts, ignore the lessons of the previous two problems. In
particular,

• they often fail to distinguish between

– the single statement Ppnq for a particular n, and

– the “quantified” result to be proved (“for all n ě 1”),

and

• they proceed in the ‘wrong’ direction (e.g. starting with the identity Ppnq and
“adding the same to both sides”).
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This latter strategy is psychologically and didactically misleading – even though it
can be justified logically when proving very simple identities. In these very simple
cases, each statement Ppnq to be proved is unusual in that it refers to exactly
one configuration, or equation, for each n. And since there is exactly one
configuration for each n, the configuration or identity for k`1 can often be obtained
by fiddling with the configuration for k. In contrast, in Problem 230, for each value
of n, there is a bewildering variety of possible polygons with n vertices, ranging
from regular polygons to the most convoluted, re-entrant shapes: the statement
Ppnq makes an assertion about all such configurations, and there is no way of
knowing whether we can obtain all such configurations for k` 1 in a uniform way
by fiddling with some configuration for k.

Readers should try to write each proof in the intended spirit, and to learn from
the solutions – since this style has been chosen to highlight what mathematical
induction is really about, and it is this approach that is needed in serious
applications.

(a) Let Ppnq be the statement:

“1` 2` 3` ¨ ¨ ¨ ` n “ npn`1q
2

”.

‚ LHS of Pp1q “ 1; RHS of Pp1q “ 1¨p1`1q
2

“ 1. Since these two are equal, Pp1q
is true.

‚ Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

“1` 2` 3` ¨ ¨ ¨ ` k “ kpk`1q
2

”.

We wish to prove that Ppk ` 1q must then be true.

Now Ppk ` 1q is an equation, so we start with the LHS of Ppk ` 1q and try
to simplify it in an appropriate way to get the RHS of Ppk ` 1):

LHS of Ppk ` 1q “ 1` 2` 3` ¨ ¨ ¨ ` k ` pk ` 1q

“ p1` 2` 3` ¨ ¨ ¨ ` kq ` pk ` 1q.

If we now use Ppkq, which we are supposing to be true, then the first bracket
is equal to kpk`1q

2
, so the complete sum is equal to:

“
kpk ` 1q

2
` pk ` 1q

“
pk ` 1qpk ` 2q

2
“ RHS of Ppk ` 1q.

Hence Ppk ` 1q holds.

If we combine these two bullet points, then we have proved that “Ppnq holds
for all n ě 1”. QED

(b) Let Ppnq be the statement:

“ 1
1¨2
` 1

2¨3
` 1

3¨4
` ¨ ¨ ¨ ` 1

n¨pn`1q
“ 1´ 1

n`1
”.
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‚ LHS of Pp1q “ 1
1¨2
“ 1

2
; RHS of Pp1q “ 1´ 1

2
“ 1

2
. Since these two are equal,

Pp1q is true.

‚ Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

“ 1
1¨2
` 1

2¨3
` 1

3¨4
` ¨ ¨ ¨ ` 1

k¨pk`1q
“ 1´ 1

k`1
”.

We wish to prove that Ppk ` 1q must then be true.

Now Ppk ` 1q is an equation, so we start with the LHS of Ppk ` 1q and try to
simplify it in an appropriate way to get the RHS of Ppk ` 1q:

LHS of Ppk ` 1q “
1

1 ¨ 2
`

1

2 ¨ 3
`

1

3 ¨ 4
` ¨ ¨ ¨ `

1

pk ` 1qpk ` 2q

“

„

1

1 ¨ 2
`

1

2 ¨ 3
`

1

3 ¨ 4
`

1

kpk ` 1q



`
1

pk ` 1qpk ` 2q
.

If we now use Ppkq, which we assume is true, then the first bracket is equal to
1´ 1

k`1
, so the complete sum is equal to:

“

„

1´
1

k ` 1



`
1

pk ` 1qpk ` 2q

“ 1´

„

1

k ` 1
´

1

pk ` 1qpk ` 2q



“ 1´
1

k ` 2

“ RHS of Ppk ` 1q.

Hence Ppk ` 1q holds.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED

(c) Note: If q “ 1, then the LHS is equal to n, but the RHS makes no sense. So
we assume q ‰ 1.

Let Ppnq be the statement:

“1` q ` q2 ` q3 ` ¨ ¨ ¨ ` qn´1
“ 1

1´q
´

qn

1´q
”.

‚ LHS of Pp1q “ 1; RHS of Pp1q “ 1
1´q

´
q

1´q
“ 1. Since these two are equal,

Pp1q is true.

‚ Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

“1` q ` q2 ` q3 ` ¨ ¨ ¨ ` qk´1
“ 1

1´q
´

qk

1´q
”.

We wish to prove that Ppk ` 1q must then be true.



326 Infinity: recursion, induction, infinite descent

Now Ppk ` 1q is an equation, so we start with the LHS of Ppk ` 1q and try to
simplify it in an appropriate way to get the RHS of Ppk ` 1q:

LHS of Ppk ` 1q “ 1` q ` q2 ` q3 ` ¨ ¨ ¨ ` qk

“

´

1` q ` q2 ` q3 ` ¨ ¨ ¨ ` qk´1
¯

` qk.

If we now use Ppkq, which we assume is true, then the first bracket is equal to

1

1´ q
´

qk

1´ q

so the complete sum is equal to:

“
1

1´ q
´

„

qk

1´ q
´ qk



“
1

1´ q
´
qk`1

1´ q

“ RHS of Ppk ` 1q.

Hence Ppk ` 1q holds.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED

(d) Note: The statement to be proved starts with a term involving “0!”. The
definition

n! “ 1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ n

does not immediately tell us how to interpret “0!”. The correct interpretation
emerges from the fact that several different thoughts all point in the same
direction.

(i) When n ą 0, then to get from n! to pn ` 1q! we multiply by pn ` 1q. If we
extend this to n “ 0, then “to get from 0! to 1!, we have to multiply by 1” –
which suggests that 0! “ 1.

(ii) When n ą 0, n! counts the number of permutations of n symbols, or the
number of different linear orders of n objects (i.e. how many different ways
they can be arranged in a line). If we extend this to n “ 0, we see that there
is just one way to arrange 0 objects (namely, sit tight and do nothing).

(iii) The definition of n! as a product suggests that 0! involves a “product with
no terms” at all. Now when we “add no terms together” it makes sense to
interpret the result as ““ 0” (perhaps because if this “sum of no terms” were
added to some other sum, it would make no difference). In the same spirit,
the product of no terms should be taken to be ““ 1” (since if this empty
product were included at the end of some other product, it would make no
difference to the result).

Let Ppnq be the statement:

“0 ¨ 0!` 1 ¨ 1!` 2 ¨ 2!` ¨ ¨ ¨ ` pn´ 1q ¨ pn´ 1q! “ n!´ 1”.
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‚ LHS of Pp1q “ 0 ¨ 0! “ 0; RHS of Pp1q “ 1! ´ 1 “ 0. Since these two are
equal, Pp1q is true.

‚ Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

“0 ¨ 0!` 1 ¨ 1!` 2 ¨ 2!` ¨ ¨ ¨ ` pk ´ 1q ¨ pk ´ 1q! “ k!´ 1”.

We wish to prove that Ppk ` 1q must then be true.

Now Ppk ` 1q is an equation, so we start with the LHS of Ppk ` 1q and try to
simplify it in an appropriate way to get the RHS of Ppk ` 1):

LHS of Ppk ` 1q “ 0 ¨ 0!` 1 ¨ 1!` 2 ¨ 2!` ¨ ¨ ¨ ` k ¨ k!

“ r0 ¨ 0!` 1 ¨ 1!` 2 ¨ 2!` ¨ ¨ ¨ ` pk ´ 1q ¨ pk ´ 1q!s ` k.k!.

If we now use Ppkq, which we assume is true, then the first bracket is equal to
k!´ 1, so the complete sum is equal to:

“ pk!´ 1q ` k ¨ k!

“ pk ` 1q ¨ k!´ 1

“ pk ` 1q!´ 1 “ RHS of Ppk ` 1q.

Hence Ppk ` 1q holds.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED

(e) Let Ppnq be the statement:

“pcos θ ` i sin θqn “ cosnθ ` i sinnθ ”

‚ LHS of Pp1q “ pcos θ ` i sin θq1; RHS of Pp1q “ cos θ ` i sin θ. Since these
two are equal, Pp1q is true.

‚ Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

“pcos θ ` i sin θqk “ cos kθ ` i sin kθ”.

We wish to prove that Ppk ` 1q must then be true.

Now Ppk ` 1q is an equation, so we start with the LHS of Ppk ` 1q and try to
simplify it in an appropriate way to get the RHS of Ppk ` 1q:

LHS of Ppk ` 1q “ pcos θ ` i sin θqk`1

“ pcos θ ` i sin θqkpcos θ ` i sin θq.

If we now use Ppkq, which we assume is true, then the first bracket is equal to
pcos kθ ` i sin kθq, so the complete expression is equal to:

“ pcos kθ ` i sin kθqpcos θ ` i sin θq

“ rcos kθ ¨ cos θ ´ sin kθ ¨ sin θs ` ircos kθ ¨ sin θ ` sin kθ ¨ cos θs

“ cospk ` 1qθ ` i sinpk ` 1qθ “ RHS of Ppk ` 1q.
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Hence Ppk ` 1q holds.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED

236. Let Ppnq be the statement:

“p1` 2` 3` ¨ ¨ ¨ ` nq2 “ 13
` 23

` 33
` ¨ ¨ ¨ ` n3 ”.

• LHS of Pp1q “ 12; RHS of Pp1q “ 13. Since these two are equal, Pp1q is true.

• Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

“p1` 2` 3` ¨ ¨ ¨ ` kq2 “ 13
` 23

` 33
` ¨ ¨ ¨ ` k3”.

We wish to prove that Ppk ` 1q must then be true.

Now Ppk`1q is an equation, so we start with one side of Ppk`1q and try to simplify
it in an appropriate way to get the other side of Ppk ` 1q. In this instance, the
RHS of Ppk` 1q is the most promising starting point (because we know a formula
for the kth triangular number, and so can see how to simplify it):

RHS of Ppk ` 1q “ 13
` 23

` 33
` ¨ ¨ ¨ ` k3 ` pk ` 1q3

“
“

13
` 23

` 33
` ¨ ¨ ¨ ` k3

‰

` pk ` 1q3.

If we now use Ppkq, which we assume is true, then the first bracket is equal to

p1` 2` 3` ¨ ¨ ¨ ` kq2,

so the complete RHS is:

“ p1` 2` 3` ¨ ¨ ¨ ` kq2 ` pk ` 1q3

“

„

kpk ` 1q

2

2

` pk ` 1q3

“
1

4
pk ` 1q2

“

k2 ` 4k ` 4
‰

“

„

pk ` 1qpk ` 2q

2

2

“ p1` 2` 3` ¨ ¨ ¨ ` pk ` 1qq2

“ LHS of Ppk ` 1q.

Hence Ppk ` 1q holds.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED

Note: A slightly different way of organizing the proof can sometimes be useful.
Denote the two sides of the equation in the statement Ppnq by fpnq and gpnq
respectively. Then

• fp1q “ 12
“ 13

“ gp1q; and
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• simple algebra allows one to check that, for each k ě 1,

fpk ` 1q ´ fpkq “ pk ` 1q3 “ gpk ` 1q ´ gpkq.

It then follows (by induction) that fpnq “ gpnq for all n ě 1.

237.

(a) T1 “ 1, T1 ` T2 “ 1` 3 “ 4, T1 ` T2 ` T3 “ 1` 3` 6 “ 10. These may not be
very suggestive. But

T1 ` T2 ` T3 ` T4 “ 20 “ 5ˆ 4,

T1 ` T2 ` T3 ` T4 ` T5 “ 35 “ 5ˆ 7,

and
T1 ` T2 ` T3 ` T4 ` T5 ` T6 “ 56 “ 7ˆ 8

may eventually lead one to guess that

T1 ` T2 ` T3 ` ¨ ¨ ¨ ` Tn “
npn` 1qpn` 2q

6
.

Note 1: This will certainly be easier to guess if you remember what you found
in Problem 17 and Problem 63.

Note 2: There is another way to help in such guessing. Suppose you notice
that

– adding values for k “ 1 up to k “ n of a polynomial of degree 0 (such as
ppxq “ 1) gives an answer that is a “polynomial of degree 1”,

1` 1` ¨ ¨ ¨ ` 1 “ n,

and

– adding values for k “ 1 up to k “ n of a polynomial of degree 1 (such as
ppxq “ x) gives an answer that is a “polynomial of degree 2”,

1` 2` 3` ¨ ¨ ¨ ` n “
npn` 1q

2
.

Then you might guess that the sum

T1 ` T2 ` T3 ` ¨ ¨ ¨ ` Tn

will give an answer that is a polynomial of degree 3 in n. Suppose that

T1 ` T2 ` T3 ` ¨ ¨ ¨ ` Tn “ An3
`Bn2

` Cn`D.

We can then use small values of n to set up equations which must be satisfied
by A, B, C, D and solve them to find A, B, C, D:

– when n “ 0, we get D “ 0;
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– when n “ 1, we get A`B ` C “ 1;

– when n “ 2, we get 8A` 4B ` 2C “ 4;

– when n “ 3, we get 27A` 9B ` 3C “ 10.

This method assumes that we know that the answer is a polynomial and that
we know its degree: it is called “the method of undetermined coefficients”.

There are various ways of improving the basic method (such as writing the
polynomial An3

`Bn2
` Cn`D in the form

Pnpn´ 1qpn´ 2q `Qnpn´ 1q `Rn` S,

which tailors it to the values n “ 0, 1, 2, 3 that one intends to substitute).

(b) Let Ppnq be the statement:

“T1 ` T2 ` T3 ` ¨ ¨ ¨ ` Tn “
npn`1qpn`2q

6
”.

‚ LHS of Pp1q “ T1 “ 1; RHS of Pp1q “ 1ˆ2ˆ3
6

“ 1. Since these two are equal,
Pp1q is true.

‚ Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k,

T1 ` T2 ` T3 ` ¨ ¨ ¨ ` Tk “
kpk ` 1qpk ` 2q

6
.

We wish to prove that Ppk ` 1q must then be true.
Now Ppk ` 1q is an equation, so we start with the LHS of Ppk ` 1q and try to
simplify it in an appropriate way to get the RHS of Ppk ` 1q:

LHS of Ppk ` 1q “ T1 ` T2 ` T3 ` ¨ ¨ ¨ ` Tk ` Tk`1

“ rT1 ` T2 ` T3 ` ¨ ¨ ¨ ` Tks ` Tk`1.

If we now use Ppkq, which we assume is true, then the first bracket is equal to

kpk ` 1qpk ` 2q

6
.

so the complete sum is equal to:

“
kpk ` 1qpk ` 2q

6
`
pk ` 1qpk ` 2q

2

“
pk ` 1qpk ` 2qpk ` 3q

6
“ RHS of Ppk ` 1q.

Hence Ppk ` 1q holds.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED
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Note: The triangular numbers T1, T2, T3, . . . , Tk, . . . Tn are also equal to the
binomial coefficients

`

k`1
2

˘

. And the sum of these binomial coefficients is another

binomial coefficient
`

n`2
3

˘

, so the result in Problem 237 can be written as:

˜

2

2

¸

`

˜

3

2

¸

`

˜

4

2

¸

` ¨ ¨ ¨ `

˜

n` 1

2

¸

“

˜

n` 2

3

¸

.

You might like to interpret Problem 237 in the language of binomial coefficients,
and prove it by repeated use of the basic Pascal triangle relation (Pascal
(1623–1662)):

˜

k

r

¸

`

˜

k

r ` 1

¸

“

˜

k ` 1

r ` 1

¸

.

Start by rewriting
˜

n` 2

3

¸

“

˜

n` 1

2

¸

`

˜

n` 1

3

¸

.

238.

(a) We know from Problem 237(b) that

1 ¨ 2` 2 ¨ 3` 3 ¨ 4` ¨ ¨ ¨ ` npn` 1q “
npn` 1qpn` 2q

3
.

Also

1 ¨ 2` 2 ¨ 3` 3 ¨ 4` ¨ ¨ ¨ ` npn` 1q “ 1 ¨ p1` 1q ` 2 ¨ p2` 1q ` 3 ¨ p3` 1q

` ¨ ¨ ¨ ` n ¨ pn` 1q

“ p12
` 1q ` p22

` 2q ` p32
` 3q

` ¨ ¨ ¨ ` pn2
` nq

“
`

12
` 22

` 32
` ¨ ¨ ¨ ` n2

˘

`p1` 2` 3` ¨ ¨ ¨ ` nq.

Therefore

12
` 22

` 32
` ¨ ¨ ¨ ` n2

“
npn` 1qpn` 2q

3
´
npn` 1q

2

“
npn` 1qp2n` 1q

6
.

(b) Guess:

1 ¨ 2 ¨ 3` 2 ¨ 3 ¨ 4` 3 ¨ 4 ¨ 5` ¨ ¨ ¨ ` npn` 1qpn` 2q “
npn` 1qpn` 2qpn` 3q

4
.
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The proof by induction is entirely routine, and is left for the reader.

1 ¨ 2 ¨ 3` 2 ¨ 3 ¨ 4` ¨ ¨ ¨ ` npn` 1qpn` 2q “ 1 ¨ p1` 1qp1` 2q ` 2 ¨ p2` 1qp2` 2q

` ¨ ¨ ¨ ` n ¨ pn` 1qpn` 2q

“ p13
` 3 ¨ 12

` 2 ¨ 1q

` p23
` 3 ¨ 22

` 2 ¨ 2q

` ¨ ¨ ¨ ` pn3
` 3n2

` 2nq

“ p13
` 23

` ¨ ¨ ¨ ` n3
q

` 3p12
` 22

` ¨ ¨ ¨ ` n2
q

` 2p1` 2` ¨ ¨ ¨ ` nq.

Therefore

13
` 23

` 33
` ¨ ¨ ¨ ` n3

“
npn` 1qpn` 2qpn` 3q

4

´ 3

„

npn` 1qp2n` 1q

6



´npn` 1q

“

„

npn` 1q

2

2

.

239.

(a) Let fpxq be any such polynomial. If fpakq “ 0, then we know (by the Remainder
Theorem) that fpxq has px ´ akq as a factor. Since the ak are all distinct, and
fpakq “ 0 for each k, 0 ď k ď n´ 1, we have

fpxq “ px´ a0qpx´ a1qpx´ a2q ¨ ¨ ¨ px´ an´1q ¨ gpxq

for some polynomial gpxq. And since we are told that fpxq has degree n, gpxq
has degree 0, so is a constant. Hence every such polynomial of degree n has the
form

C ¨ px´ a0qpx´ a1qpx´ a2q ¨ ¨ ¨ px´ an´1q.

Since fpanq “ b, we can substitute to find C:

C “
b

pan ´ a0qpan ´ a1qpan ´ a2q ¨ ¨ ¨ pan ´ an´1q
.

(b) Let Ppnq be the statement:

“Given any two labelled sets of n ` 1 real numbers a0, a1, a2, . . . , an,
and b0, b1, b2, . . . , bn, where the ai are all distinct (but the bi need not
be), there exists a polynomial fn of degree n, such that fnpa0q “ b0,
fnpa1q “ b1, fnpa2q “ b2, . . . , fnpanq “ bn.”

‚ When n “ 0, we may choose f0pxq “ b0 to be the constant polynomial. Hence
Pp0q is true.
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‚ Suppose that Ppkq is true for some particular (unspecified) k ě 0; that is, we
know that, for this particular k:

“Given any two labelled sets of k ` 1 real numbers a0, a1, a2, . . . , ak,
and b0, b1, b2, . . . , bk, where the ai are all distinct (but the bi need not
be), there exists a polynomial fk of degree k, such that fkpa0q “ b0,
fkpa1q “ b1, fkpa2q “ b2, . . . , fkpakq “ bk.”

We wish to prove that Ppk ` 1q must then be true.

Now Ppk ` 1q is the statement:

“Given any two labelled sets of pk`1q`1 real numbers a0, a1, . . . , ak`1,
and b0, b1, b2, . . . , bk`1, where the ai are all distinct (but the bi need not
be), there exists a polynomial fk`1 of degree k ` 1, such that

fk`1pa0q “ b0, fk`1pa1q “ b1, fk`1pa2q “ b2, . . . , fk`1pak`1q “ bk`1.”

So to prove that Ppk ` 1q holds, we must start by considering

any two labelled sets of pk ` 1q ` 1 real numbers
a0, a1, a2, . . . , ak`1, and b0, b1, b2, . . . , bk`1,

where the ai are all distinct (but the bi need not be).

We must then somehow construct a polynomial function fk`1 of degree k ` 1
with the required property.

Because we are supposing that Ppkq is known to be true, we can focus on the first
k` 1 numbers in each of the two lists – a0, a1, a2, . . . , ak, and b0, b1, b2, . . . , bk –
and we can then be sure that there is a polynomial fk of degree k such that

fkpa0q “ b0, fkpa1q “ b1, fkpa2q “ b2, . . . , fkpakq “ bk.

The next step is slightly indirect: we make use of the polynomial fk`1 which we
are still trying to construct, and focus on the polynomial

fpxq “ fk`1pxq ´ fkpxq

satisfying

fpa0q “ fpa1q “ ¨ ¨ ¨ “ fpakq “ 0, fpak`1q “ bk`1 ´ fkpak`1q “ b psayq.

Part (a) guarantees the existence of such a polynomial fpxq of degree k` 1 and
tells us exactly what this polynomial function fpxq is equal to. Hence we can
construct the required polynomial fk`1px) by setting it equal to fpxq ` fkpxq,
which proves that Ppk ` 1q is true.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED

240.

(a) 5 cents cannot be made; 6 “ 3` 3; 7 “ 3` 4; 8 “ 4` 4; 9 “ 3` 3` 3; etc.

Guess: Every amountą N “ 5 can be paid directly (without receiving change).
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(b) Let Ppnq be the statement:

“n cents can be paid directly (without change) using 3 cent and 4
cent coins”.

– Pp6q is the statement: “6 cents can be paid directly”. And 6 “
3` 3, so Pp6q is true.

– Now suppose that we know Ppkq is true for some k ě 6. We must
show that Ppk ` 1q must then be true.

To prove Ppk ` 1q we consider the statement Ppk ` 1q:

“k ` 1 cents can be paid directly”.

We know that Ppkq is true, so we know that “k cents can be paid
directly”.

– If a direct method of paying k cents involves at least one 3 cent
coin, then we can replace one 3 cent coin by a 4 cent coin to produce
a way of paying k ` 1 cents.

Hence we only need to worry about a situation in which the only way
to pay k cents directly involves no 3 cent coins at all – that is, paying
k cents uses only 4 cent coins. But then there must be at least two
4 cent coins (since k ě 6), and we can replace two 4 cent coins by
three 3 cent coins to produce a way of paying k ` 1 cents directly.

Hence

‚ Pp6q is true; and

‚ whenever Ppkq is true for some k ě 6, we know that Ppk ` 1q is
also true.

6 Ppnq is true for all n ě 6. QED

241.

(a) z2 ´ z ` 1 “ 0, so z “ 1˘
?
´3

2
(these are the two primitive sixth roots of unity).

6 z2 “ ´1˘
?
´3

2
(the two primitive cube toots of unity), and

z2 `
1

z2
“ ´1.

(b) z2 ´ 2z ` 1 “ 0, so z “ 1 (repeated root). 6 z2 “ 1 and z2 ` 1
z2
“ 2.

(c), (d) z2 ´ 3z ` 1 “ 0, so z “ 3˘
?
5

2
.

As soon as one starts calculating z2 and 1
z2

, it becomes clear that it is time to
p-a-u-s-e and think.

ˆ

z `
1

z

˙2

“

ˆ

z2 `
1

z2

˙

` 2,

so whenever z ` 1
z
“ k is an integer,

z2 `

ˆ

1

z

˙2

“ k2 ´ 2
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is also an integer.

(e) Let Ppnq be the statement:

“if z has the property that z ` 1
z

is an integer, then zm ` 1
zm

is also an
integer for all m, 0 ď m ď n”.

‚ Pp0q and Pp1q are clearly both true; and Pp2q was proved in part (d) above.

‚ Suppose that Ppkq is true for some particular (unspecified) k ě 2; that is, we
know that, for this particular k:

“if z has the property that z ` 1
z

is an integer, then zm ` 1
zm

is also an
integer for all m, 0 ď m ď k”.

We wish to prove that Ppk ` 1q must then be true.

If z ` 1
z

is an integer, then, by Ppkq,

“zm ` 1
zm

is also an integer for all m, 0 ď m ď k”.

So to prove that Ppk ` 1q holds, we only need to show that

“zk`1
` 1

zk`1 is an integer”.

By the Binomial Theorem:

ˆ

z `
1

z

˙k`1

“

ˆ

zk`1
`

1

zk`1

˙

`

˜

k ` 1

1

¸

ˆ

zk´1
`

1

zk´1

˙

`

˜

k ` 1

2

¸

ˆ

zk´3
`

1

zk´3

˙

` ¨ ¨ ¨

The LHS is an integer (since z ` 1
z

is an integer), and (by Ppkq) every term
on the RHS is an integer except possibly the first. Hence the first term is the
difference of two integers, so must also be an integer.

Hence Ppk ` 1q is true.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED

Note: If k ` 1 “ 2m is even, the expansion of
`

z ` 1
z

˘k`1
has an odd number

of terms, so the RHS of the above re-grouped expansion ends with the term
`

2m
m

˘

¨ zm ¨
`

1
z

˘m
, which is also an integer.

242.

Note: In the solution to Problem 241 we included the condition on z as part of
the statement Ppnq.

In Problem 242 the result to be proved has a similar background hypothesis – “Let
p be a prime number”. It may make the induction clearer if, as in the statement
of the Problem, this hypothesis is stated before starting the induction proof.

Let p be any prime number. We let Ppnq be the statement:

“np ´ n is divisible by p ”.
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• Pp1q is true (since 1p ´ 1 “ 0 “ 0ˆ p , which is divisible by p).

• Suppose that Ppkq is true for some particular (unspecified) k ě 1; that is, we
know that, for this particular k:

“kp ´ k is divisible by p”.

We wish to prove Ppk ` 1q – that is,

“pk ` 1qp ´ pk ` 1q is divisible by p”

must then be true. Using the Binomial Theorem again we see that

pk ` 1qp ´ pk ` 1q “

«

kp `

˜

p

p´ 1

¸

kp´1
`

˜

p

p´ 2

¸

kp´2
` ¨ ¨ ¨ `

˜

p

1

¸

k ` 1

ff

´pk ` 1q

“ pkp ´ kq `

«˜

p

p´ 1

¸

kp´1
`

˜

p

p´ 2

¸

kp´2
` ¨ ¨ ¨ `

˜

p

1

¸

k

ff

.

By Ppkq, the first bracket on the RHS is divisible by p; and in each of the other
terms each of the binomial coefficients

`

p
r

˘

, 0 ă r ă p,

• is an integer, and

• has a factor “p” in the numerator and no such factor in the denominator.

Hence each term in the second bracket is a multiple of p. So the RHS (and hence
the LHS) is divisible by p.

Hence Ppk ` 1q is true.

If we combine these two bullet points, we have proved that “Ppnq holds for all
n ě 1”. QED

243.

0.037037037 . . . (for ever) “
37

1000
`

37

1 000 000
`

37

1 000 000 000
` ¨ ¨ ¨ (for ever).

This is a geometric series with first term a “ 37
1000

and common ratio r “ 1
1000

,
and so has sum

a

1´ r
“

37

999
“

1

27
.

244.

(a) Each person receives in total:

1

4
`

ˆ

1

4

˙2

`

ˆ

1

4

˙3

`

ˆ

1

4

˙4

` ¨ ¨ ¨ (for ever) “
1

3

(here a “ 1
4
“ r).
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(b) You have

1´
1

2
`

1

4
´

1

8
` ¨ ¨ ¨ (for ever) “

2

3

(here a “ 1, r “ ´ 1
2
); I have

1

2
´

1

4
`

1

8
´ ¨ ¨ ¨ (for ever) “

1

3

(here a “ 1
2
, r “ ´ 1

2
).

245. The trains are 120 km apart, and the fly travels at 50 km/h towards Train
B, which is initially 120 km away and travelling at 30 km/h.

The relative speed of the fly and Train B is 80 km/h, so it takes 3
2

hours before
they meet. In this time Train A and Train B have each travelled 45 km, so they
are now 30 km apart. The fly then turns right round and flies back to Train A.

The relative speed of the fly and Train A is then also 80 km/h, so it takes just
3
8

hours (or 22.5 minutes) for the fly to return to Train A. Train A and Train B
have each travelled 45

4
km in this time, so they are now 30

4
km apart. The fly then

turns round and flies straight back to Train B.

Train B is 30
4

km away and the relative speed of the fly and Train B is again 80
km/h, so the journey takes 3

32
hours (or 5.625 minutes).

Continuing in this way, we see that the fly takes

3

2
`

3

8
`

3

32
`

3

128
` ¨ ¨ ¨ (for ever) “ 2 hours.

Hence the fly travels 100 km before being squashed.

Note: The two trains are approaching each other at 60 km/h, so they crash in
exactly 2 hours – during which time the fly travels 100 km.

246.

(a)(i) 32
ą 22; therefore

1

32
ă

1

22
,

so
1

22
`

1

32
ă

2

22
“

1

2
.

(ii) 72
ą 62

ą 52
ą 42; therefore

1

72
ă

1

62
ă

1

52
ă

1

42
,

so
1

42
`

1

52
`

1

62
`

1

72
ă

4

42
“

1

4
.
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(b) The argument in part (a) gives an upper bound for each bracketed expression
in the sum

ˆ

1

12

˙

`

ˆ

1

22
`

1

32

˙

`

ˆ

1

42
`

1

52
`

1

62
`

1

72

˙

`

ˆ

1

82
` ¨ ¨ ¨ `

1

152

˙

` ¨ ¨ ¨

Replacing each bracket by its upper bound, we see that the sum is

ă
1

12
`

2

22
`

4

42
`

8

82
` ¨ ¨ ¨

“ 1`
1

2
`

1

4
`

1

8
` ¨ ¨ ¨ (for ever)

“ 2.

(c) The finite partial sums

Sn “
1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2

– increase steadily as we take more and more terms, and

– every partial sum Sn is less than 2.

It is clear that these partial sums form a sequence

1 “ S1 ă S2 ă S3 ă ¨ ¨ ¨ ă Sn ă Sn`1 ă ¨ ¨ ¨ ă 2.

It follows that there is some (unknown) number S ď 2 to which the partial sums
converge as n Ñ 8, and we take this (unknown) exact value S to be the exact
value of the endless sum

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

n2
` ¨ ¨ ¨ (for ever)

To see, for example, that S ą 17
12

, notice that

S ą S4

“
1

12
`

1

22
`

1

32
`

1

42

“ 1`
1

4
`

1

9
`

1

16

ą
17

12
.

Note 1: The claim that

“an increasing sequence of partial sums Sn, all less than 2, must converge
to some number S ď 2”

is a fundamental property of the real numbers – called completeness.

Note 2: Just as one can obtain better and better lower bounds for S – like
“ 17
12
ă S”, so one can improve the upper bound “S ă 2”. For example, if in

part (b) we avoid replacing the third term 1
9

by 1
4
, we get a better upper bound

“S ă 67
36

”, which is 5
36

less than 2.
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247.

(a) Let Ppnq be the statement:

“ 1
12
` 1

22
` 1

32
` ¨ ¨ ¨ ` 1

n2 ď 2´ 1
n

”.

‚ Then LHS of Pp1q “ 1
12
“ 1, and RHS of Pp1q “ 2 ´ 1 “ 1. Hence Pp1q is

true.

‚ Suppose we know that Ppkq is true for some k ě 1. We want to prove that
Ppk ` 1q holds.

LHS of Ppk ` 1q “
1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

k2
`

1

pk ` 1q2

“

„

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

k2



`
1

pk ` 1q2

ď

„

2´
1

k



`
1

pk ` 1q2

“ 2´

„

1

k
´

1

pk ` 1q2



ă 2´
1

k ` 1
.

Hence Ppk ` 1q holds.
6 Pp1q holds; and whenever Ppkq is known to be true, Ppk ` 1q is also true.
6 Ppnq is true, for all n ě 1. QED

(b) Let Ppnq be the statement:

“ 1
12
` 1

22
` 1

32
` ¨ ¨ ¨ ` 1

n2 ă 1.68´ 1
n

”.

‚ Then

LHS of Pp4q “
1

12
`

1

22
`

1

32
`

1

42
“ 1.423611111 ¨ ¨ ¨ ,

and RHS of Pp4q “ 1.43. Hence Pp4q is true.

‚ Suppose we know that Ppkq is true for some k ě 4. We want to prove that
Ppk ` 1q holds.

LHS of Ppk ` 1q “
1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

k2
`

1

pk ` 1q2

“

ˆ

1

12
`

1

22
`

1

32
` ¨ ¨ ¨ `

1

k2

˙

`
1

pk ` 1q2

ă

„

1.68´
1

k



`
1

pk ` 1q2

“ 1.68´

„

1

k
´

1

pk ` 1q2



ă 1.68´
1

k ` 1
.

Hence Ppk ` 1q holds.
6 Pp1q holds; and whenever Ppkq is known to be true, Ppk ` 1q is also true.
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6 Ppnq is true, for all n ě 1. QED

248.

(a)(i) n! “ nˆ pn´ 1q ˆ pn´ 2q ˆ ¨ ¨ ¨ ˆ 3ˆ 2ˆ 1 ě 2ˆ 2ˆ 2ˆ ¨ ¨ ¨ ˆ 2ˆ 1 “ 2n´1

whenever n ě 1.

6 1
n!
ď

`

1
2

˘n´1
for all n ě 1.

6 1
0!
` 1

1!
` 1

2!
`¨ ¨ ¨` 1

n!
ď 1`

”

1` 1
2
`
`

1
2

˘2
` ¨ ¨ ¨ `

`

1
2

˘n´1
ı

ă 3 for all n ě 0.

(ii) As we go on adding more and more terms, each finite sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!

is bigger than the previous sum. Since every finite sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ă 3,

the sums increase, but never reach 3, so they accumulate closer and closer to
a value “e” ď 3. Moreover, this value “e” is certainly larger than the sum of
the first two terms 1

0!
` 1

1!
“ 2, so 2 ă e ď 3.

(b)(i) Let Ppnq be the statement:

“ 1
0!
` 1

1!
` 1

2!
` ¨ ¨ ¨ ` 1

n!
ď 3´ 1

n¨n!
”.

‚ LHS of Pp1q “ 2 “ RHS of Pp1q. Hence Pp1q is true.

‚ Suppose we know that Ppkq is true for some k ě 1. We want to prove that
Ppk ` 1q holds.

LHS of Ppk ` 1q “
1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

pk ` 1q!

“

„

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

k!



`
1

pk ` 1q!

ď 3´
1

k ¨ k!
`

1

pk ` 1q!

“ 3´
1

kpk ` 1q!

ă 3´
1

pk ` 1q ¨ pk ` 1q!

Hence Ppk ` 1q holds.
6 Pp1q holds; and whenever Ppkq is known to be true, Ppk ` 1q is also true.
6 Ppnq is true, for all n ě 1. QED

(ii) [The reasoning here uses the constant “3” while ignoring the refinement “3´
1

n.n!
”, and so sounds exactly like part (a)(ii).] As we add more terms, each

finite sum
1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
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is bigger than the previous sum. Since every finite sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ă 3,

the partial sums increase, but never reach 3; so they accumulate closer and
closer to a value “e” ď 3. Moreover, this value “e” is certainly larger than
the sum of the first three terms 1

0!
` 1

1!
` 1

2!
“ 2.5, so 2.5 ă e ď 3.

(c) Note: Examine carefully the role played by the number “3” in the above
induction proof in (b)(ii). It is needed precisely to validate the statement Pp1q:
since 1

0!
` 1

1!
“ 3´ 1

1ˆ1!
”. But the number “3” plays no active part in the second

induction step, and could be replaced by any other number we choose.

The exact value “e” of the infinite series is not really affected by what happens
when n “ 1. Suppose we ask: “What number C2 should replace “3” if we only
want to prove that

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ď C2 ´

1

n ¨ n!
, for all n ě 2?

The only part of the induction proof where C2 then matters is when we try to
check that Pp2q holds; so we must choose the smallest possible C2 to satisfy

1

0!
`

1

1!
`

1

2!
ď C2 ´

1

2.2!
:

that is, C2 “ 2.75.

(i) Let Ppnq be the statement:

“ 1
0!
` 1

1!
` 1

2!
` ¨ ¨ ¨ ` 1

n!
ď 2.75´ 1

n¨n!
”.

‚ LHS of Pp2q “ 2.5; RHS of Pp2q “ 2.75´ 1
4
. Hence Pp2q is true.

‚ Suppose we know that Ppkq is true for some k ď 2. We want to prove that
Ppk ` 1q holds.

LHS of Ppk ` 1q “
1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

pk ` 1q!

“

„

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

k!



`
1

pk ` 1q!

ď 2.75´
1

k ¨ k!
`

1

pk ` 1q!

“ 2.75´
1

kpk ` 1q!

ă 2.75´
1

pk ` 1qpk ` 1q!

Hence Ppk ` 1q holds.
6 Pp2q holds; and whenever Ppkq is known to be true, Ppk ` 1q is also true.
6 Ppnq is true, for all n ě 2. QED
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(ii) As we add more terms, each finite sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!

is bigger than the previous sum.
Since every finite sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ă 2.75,

the finite sums increase, but never reach 2.75, so they accumulate closer and
closer to a value “e” ď 2.75. Moreover, this value “e” is certainly larger than
the sum of the first four terms

1

0!
`

1

1!
`

1

2!
`

1

3!
ą 2.66,

so 2.66 ă e ď 2.75.

(d)(i) Let Ppnq be the statement:

“ 1
0!
` 1

1!
` 1

2!
` ¨ ¨ ¨ ` 1

n!
ď 2.7222 ¨ ¨ ¨ pfor ever)´ 1

n.n!
”.

‚ LHS of Pp3q “ 1
0!
` 1

1!
` 1

2!
` 1

3!
“ 2.666 ¨ ¨ ¨ (for ever);

RHS of Pp3q “ 2.7222 ¨ ¨ ¨ (for ever) ´ 1
18
“ 2.666 ¨ ¨ ¨ (for ever).

Hence Pp3q is true.

‚ Suppose we know that Ppkq is true for some k ě 3. We want to prove that
Ppk ` 1q holds.

LHS of Ppk ` 1q “
1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

pk ` 1q!

“

„

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

k!



`
1

pk ` 1q!

ď 2.7222 ¨ ¨ ¨ pfor everq ´
1

k ¨ k!
`

1

pk ` 1q!

“ 2.7222 ¨ ¨ ¨ pfor everq ´
1

kpk ` 1q!

ă 2.7222 ¨ ¨ ¨ pfor everq ´
1

pk ` 1qpk ` 1q!

Hence Ppk ` 1q holds.
6 Pp3q holds; and whenever Ppkq is known to be true, Ppk ` 1q is also true.
6 Ppnq is true, for all n ě 3. QED

(ii) As we add more terms, each finite sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!

is bigger than the previous sum.
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Since every finite sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ă 2.7222 ¨ ¨ ¨ (for ever),

the finite sums increase, but never reach 2.7222 ¨ ¨ ¨ (for ever), so they
accumulate closer and closer to a value “e” ď 2.7222 ¨ ¨ ¨ (for ever). Moreover,
this value “e” is certainly larger than the sum of the first five terms

1

0!
`

1

1!
`

1

2!
`

1

3!
`

1

4!
ą 2.708,

so 2.708 ă e ď 2.7222 ¨ ¨ ¨ (for ever).

Note: This process of refinement can continue indefinitely. But we only have
to go one further step to pin down the value of “e” with surprising accuracy.

The next step uses the same proof to show that

“ 1
0!
` 1

1!
` 1

2!
` ¨ ¨ ¨ ` 1

n!
ď 2.7185´ 1

n¨n!
, for all n ě 4”,

and to conclude that the endless sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
` ¨ ¨ ¨ pfor everq

has a definite value “e” that lies somewhere between 2.716 and 2.71875.

We could then repeat the same proof to show that

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
ď 2.718333 ¨ ¨ ¨ pfor everq ´

1

n ¨ n!
, for all n ě 5,

and use the lower bound 2.7177 . . . from the first seven terms to conclude that
the endless sum

1

0!
`

1

1!
`

1

2!
` ¨ ¨ ¨ `

1

n!
` ¨ ¨ ¨ (for ever)

has a definite value “e” that lies somewhere between 2.7177 and 2.718333 ¨ ¨ ¨
(for ever). And so on.

249. Let Ppnq be the statement:

“ 1?
1
` 1?

2
` 1?

3
` ¨ ¨ ¨ ` 1?

n
ě
?
n”.

• LHS of Pp1q “ 1 “ RHS of Pp1q. Hence Pp1q is true.
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• Suppose we know that Ppkq is true for some k ě 1. We want to prove that
Ppk ` 1q holds.

LHS of Ppk ` 1q “
1
?

1
`

1
?

2
`

1
?

3
` ¨ ¨ ¨ `

1
?
k ` 1

“

ˆ

1
?

1
`

1
?

2
`

1
?

3
` ¨ ¨ ¨ `

1
?
k

˙

`
1

a

pk ` 1q

ě
?
k `

1
?
k ` 1

ě
?
k ` 1

ˆ

since
1

?
k ` 1

ě
1

?
k ` 1`

?
k

˙

.

Hence Ppk ` 1q holds.

6 Pp1q holds; and whenever Ppkq is known to be true, Ppk ` 1q is also true.
6 Ppnq is true, for all n ě 1. QED

250. Let a, b be real numbers such that a ‰ b, and a` b ą 0.

One of a, b is then the greater, and we may suppose this is a – so that a ą b.
If a ą b ą 0, then an ą bn ą 0 for all n; if b ă 0, then a ` b ą 0 implies that
a “ |a| ą |b|, so an ą bn for all n.

Let Ppnq be the statement:

“a
n`bn

2
ě

`

a`b
2

˘n
”.

• LHS of Pp1q “ a`b
2
“ RHS of Pp1q. Hence Pp1q is true.

• Suppose we know that Ppkq is true for some k ě 1. We want to prove that
Ppk ` 1q holds.

RHS of Ppk ` 1q “

ˆ

a` b

2

˙k`1

“
a` b

2
¨

ˆ

a` b

2

˙k

ď
a` b

2
¨
ak ` bk

2
pby Ppkqq

“
ak`1

` bk`1

4
`
abk ` bak

4

ă
ak`1

` bk`1

2
psince pak ´ bkqpa´ bq ą 0q.

Hence Ppk ` 1q holds.
6 Pp1q holds; and whenever Ppkq is known to be true, Ppk ` 1q is also true.
6 Ppnq is true, for all n ě 1. QED
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251. Let x be any real number ě ´1.

If x “ ´1, then p1` xqn “ 0 ě 1´ n “ 1` nx, for all n ě 1.

Thus we may assume that x ą ´1, so 1` x ą 0.

Let Ppnq be the statement: “p1` xqn ě 1` nx”.

• LHS of Pp1q “ 1` x “ RHS of Pp1q. Hence Pp1q is true.

• Suppose we know that Ppkq is true for some k ě 1. We want to prove that
Ppk ` 1q holds.

LHS of Ppk ` 1q “ p1` xqk`1

“ p1` xq ¨ p1` xqk

ě p1` xq ¨ p1` kxq pby Ppkq, since 1` x ą 0q

“ 1` pk ` 1qx` kx2

ě 1` pk ` 1qx

Hence Ppk ` 1q holds.
6 Pp1q holds; and whenever Ppkq is known to be true, Ppk ` 1q is also true.
6 Ppnq is true, for all n ě 1. QED

252. The problem is discussed after the statement of Problem 252 in the main
text.

253.

(a)(i) 3 ą 2, so 1
3
ă 1

2
.

6 1
2
` 1

3
ă 1

2
` 1

2
“ 1.

(ii) 5, 6, 7 ą 4; hence 1
5
, 1
6
, 1
7

are all ă 1
4
.

6 1
4
` 1

5
` 1

6
` 1

7
ă 1

4
` 1

4
` 1

4
` 1

4
“ 1.

(iii) Let Ppnq be the statement:

“ 1
1
` 1

2
` 1

3
` ¨ ¨ ¨ ` 1

2n´1
ă n”.

Then

‚ Pp2q is true by (i), since

1

1
`

1

2
`

1

3
ă 1`

ˆ

1

2
`

1

2

˙

“ 2.

‚ Suppose that Ppkq is true for some k ě 2.

LHS of Ppk ` 1q “

„

1

1
`

1

2
`

1

3
` ¨ ¨ ¨ `

1

2k ´ 1



`

„

1

2k
` ¨ ¨ ¨ `

1

2k`1 ´ 1



.
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The first bracket is ă k (by Ppkq); and each of the 2k terms in the second
bracket is ď 1

2k
, so the whole bracket is ď 1.

Hence the LHS of Ppk ` 1q ă k ` 1, so Ppk ` 1q is true.

Hence Ppnq is true for all n ě 2.

(iv) At the very first stage (part (i)) we replaced 1
2
` 1

3
by 1

2
` 1

2
“ 1. Hence when

n ě 2, we know that the two sides of Ppnq differ by at least 1
2
´ 1

3
. This

difference is greater than 1
2n

when n ě 3, so (iv) follows.

(b)(i) 3 ă 4, so 1
3
ą 1

4
.

6 1
3
` 1

4
ą 1

4
` 1

4
“ 1

2
.

(ii) 5, 6, 7 ă 8; hence 1
5
, 1
6
, 1
7

are all ą 1
8
.

6 1
5
` 1

6
` 1

7
` 1

8
ą 1

8
` 1

8
` 1

8
` 1

8
“ 1

2
.

(iii) Let Ppnq be the statement:

“ 1
1
` 1

2
` 1

3
` ¨ ¨ ¨ ` 1

2n
ą 1` n

2
”.

Then

‚ Pp2q is true by (i), since

1

1
`

1

2
`

1

3
`

1

4
“ 1`

1

2
`

ˆ

1

3
`

1

4

˙

ą 1`
1

2
`

ˆ

1

4
`

1

4

˙

“ 1` 2ˆ
1

2
.

‚ Suppose that Ppkq is true for some k ě 2.

LHS of Ppk ` 1q “
“

1
1
` 1

2
` 1

3
` ¨ ¨ ¨ ` 1

2k

‰

`

”

1
2k`1

` ¨ ¨ ¨ ` 1
2k`1

ı

.

The first bracket is ą 1` k
2

(by Ppkq);

and each of the 2k terms in the second bracket is ě 1
2k`1 , so the whole

bracket is ě 1
2
.

Hence the LHS of Ppk ` 1q ą 1` k`1
2

, so Ppk ` 1q is true.

Hence Ppnq is true for all n ě 2.

254.

(a) We use induction. Let Ppnq be the statement:

“n identical rectangular strips of length 2 balance exactly on the edge
of a table if the successive protrusion distances (first beyond the edge of
the table, then beyond the leading edge of the strip immediately below,
and so on) are the terms

1

n
,

1

n´ 1
,

1

n´ 2
, . . . ,

1

3
,

1

2
,

1

1

of the finite harmonic series in reverse order.”
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‚ When n “ 1, a single strip which protrudes distance 1 beyond the edge of the
table has its centre of gravity exactly over the edge of the table. Hence Pp1q
is true.

‚ Suppose that we know that Ppkq is true for some k ě 1.
Let k` 1 identical strips be arranged as described in the statement Ppk` 1q.
The statement Ppkq guarantees that the top k strips would exactly balance if
the leading edge of the bottom strip were in fact the edge of the table; hence
the combined centre of gravity of the top k strips is positioned exactly over
the leading edge of the bottom strip.
Let M be the mass of each strip; since the leading edge of the bottom strip
is distance 1

k`1
beyond the edge of the table, the top k strips produce a

combined moment about the edge of the table equal to kM ˆ 1
k`1

.

The centre of gravity of the bottom strip is distance 1´ 1
k`1

“ k
k`1

from the
edge of the table in the opposite direction; hence it contributes a moment

about the edge of the table equal to M ˆ

´

´ k
k`1

¯

.

6 the total moment of the whole stack about the edge of the table is equal
to zero, so the centre of gravity of the combined stack of k ` 1 strips lies
exactly over the edge of the table. Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 1.

(b) Problem 253(b)(iii) now guarantees that a stack of 2n strips can protrude a
distance ą 1` n

2
beyond the edge of the table.

Note: Ivars Petersen’s Mathematical Tourist blog contains an entry in 2009

http://mathtourist.blogspot.com/2009/01/overhang.html

which explores how one can obtain large overhangs with fewer strips if one is
allowed to use strips to counterbalance those that protrude beyond the edge of
the table.

255.

(a)(i) Let Ppnq be the statement:

“s2p´2 ă s2p ă s2q`1 ă s2q´1 for all p, q such that 1 ď p, q ď n”.

‚ Pp1q is true (since s0 is the empty sum, so

0 “ s0 ă s2 “
1

2
ă s3 “

5

6
ă s1 “ 1.

‚ Suppose that Ppkq is true for some k ě 1. Then most of the inequalities in
the statement Ppk`1q are part of the statement Ppkq; the only outstanding
inequalities which remain to be proved are:

s2k ă s2k`2 ă s2k`3 ă s2k`1.

http://mathtourist.blogspot.com/2009/01/overhang.html
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which are true, since

s2k`3 “ s2k`2 `
1

2k ` 3
“ s2k`1 ´

1

2k ` 2
`

1

2k ` 3

and

s2k`2 “ s2k `
1

2k ` 1
´

1

2k ` 2
.

Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 2.

(ii) The “even sums” s0, s2, s4, . . . are increasing, but all are less than s1 “ 1, so
they approach some value seven ď 1.
The “odd sums” s1, s3, s5, . . . are decreasing, but all are greater than s2 “

1
2
,

so they approach some value sodd ě
1
2
.

The “even sums” s0, s2, s4, . . . are increasing, but all are less than s5 “
47
60

,
so they approach some value seven ď

47
60

.
The “odd sums” s1, s3, s5, . . . are decreasing, but all are greater than s6 “

37
60

,
so they approach some value sodd ě

37
60

.
Moreover, the difference between successive sums is 1

n
, and this tends towards

zero, so the difference between each “odd sum” and the next “even sum” tends
to zero, so seven “ sodd.

(b) The proof from part (a) carries over word for word, with “ 1
k

” replaced at each
stage by “ak”.

256. Let Ppnq be the statement:

“fk has at least k distinct prime factors”.

• f1 “ 2 has exactly 1 prime factor, so Pp1q is true.

• Suppose that Ppkq is true for some k ě 1.

Then fk`1 “ fkpfk`1q. The first factor fk has at least k distinct prime factors.

And the second factor fk ` 1 ą fk ą 1, so has at least one prime factor.

Moreover HCF pfk, fk ` 1q “ 1, so the second bracket has no factor in common
with fk.

Hence fk`1 has at least k ` 1 distinct prime factors, so Ppk ` 1q is true.

Hence Ppnq is true for all n ě 1.

Note: This problem [suggested by Serkan Dogan] gives a different proof of the
result (Problem 76(d)) that the list of prime numbers goes on for ever.

257.

(a) Let Ppnq be the statement: “n distinct points on a straight line divide the line
into n` 1 intervals”.

‚ 0 points leave the line in pristine condition – namely a single interval – so
Pp0q is true.
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‚ Suppose that Ppkq is true for some k ě 0.
Consider an arbitrary straight line divided by k ` 1 points A0, A1, . . . , Ak.
Then the k points A1, . . . , Ak divide the line into k ` 1 intervals (by Ppkq).
The additional point A0 is distinct from A1, . . . , Ak and so must lie inside
one of these k` 1 intervals, and divides it in two – giving pk` 1q ` 1 “ k` 2
intervals altogether.
Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 0.

(b) (i) We want a function R satisfying

R0 “ 1, R1 “ 2, R2 “ 4, R3 “ 7.

If we notice that in part (a)

n` 1 “ 1`

˜

n

1

¸

,

then we might guess that

Rn “ 1`

˜

n

1

¸

`

˜

n

2

¸

.

(ii) Let Ppnq be the statement:

“n distinct straight lines in the plane divide the plane into at most

fpnq “ 1`

˜

n

1

¸

`

˜

n

2

¸

regions”.

‚ 0 lines leave the plane in pristine condition – namely a single region – so Pp0q
is true, provided that

1`

˜

0

1

¸

`

˜

0

2

¸

“ 1.

‚ Suppose that Ppkq is true for some k ě 0.
Consider the plane divided by k ` 1 straight lines m0,m1, . . . ,mk.
Then the k lines m1, . . . ,mk divide the plane into at most

Rk “ 1`

˜

k

1

¸

`

˜

k

2

¸

regions (by Ppkq).
The additional line m0 is distinct from m1, . . . ,mk and so meets each of these
lines in at most a single point – giving at most k points on the line m0. These
points divide m0 into at most k ` 1 intervals, and each of these intervals
corresponds to a cut-line, where the line m0 cuts one of the regions created
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by the lines m1,m2, . . . ,mk into two pieces – giving at most

Rk ` pk ` 1q “ 1`

˜

k

1

¸

`

˜

k

2

¸

` k ` 1

“ 1`

˜

k ` 1

1

¸

`

˜

k ` 1

2

¸

“ Rk`1

regions altogether.
Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 0.

(c) (i) We want a function S satisfying

S0 “ 1, S1 “ 2, S2 “ 4, S3 “ 8, S4 “ 15, . . .

After thinking about the differences between successive terms in part (b), we
might guess that

Sn “

˜

n

0

¸

`

˜

n

1

¸

`

˜

n

2

¸

`

˜

n

3

¸

.

(ii) Let Ppnq be the statement:

“n distinct planes in 3-space divide space into at most

Sn “

˜

n

0

¸

`

˜

n

1

¸

`

˜

n

2

¸

`

˜

n

3

¸

regions”.

‚ 0 planes leave our 3D space in pristine condition – namely a single region –
so Pp0q is true – provided that

˜

0

0

¸

`

˜

0

1

¸

`

˜

0

2

¸

`

˜

0

3

¸

“ 1.

‚ Suppose that Ppkq is true for some k ě 0.
Consider 3D divided by k ` 1 planes m0,m1, . . . ,mk.
Then the k planes m1, . . . ,mk divide 3D into at most

Sk “

˜

k

0

¸

`

˜

k

1

¸

`

˜

k

2

¸

`

˜

k

3

¸

regions (by Ppkq).
The additional plane m0 is distinct from m1, . . . ,mk and so meets each of
these planes in (at most) a line – giving rise to at most k lines on the plane
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m0. This arrangement of lines on the plane m0 divides m0 into at most

Rk “ 1`

˜

k

1

¸

`

˜

k

2

¸

regions, and each of these regions on the plane m0 is the “cut” where the
plane m0 cuts an existing region into two pieces – giving rise to at most

Sk `Rk “

«˜

k

0

¸

`

˜

k

1

¸

`

˜

k

2

¸

`

˜

k

3

¸ff

`

«

1`

˜

k

1

¸

`

˜

k

2

¸ff

“

˜

k ` 1

0

¸

`

˜

k ` 1

1

¸

`

˜

k ` 1

2

¸

`

˜

k ` 1

3

¸

“ Sk`1

regions altogether. (There is no need for any algebra here: one only needs to
use the Pascal triangle condition.)
Hence Ppk ` 1q is true whenever Ppkq is true.

Hence Ppnq is true for all n ě 0.

258. Notice that, given a dissection of a square into k squares, we can always
cut one square into four quarters (by lines through the centre, and parallel to the
sides), and so create a dissection with k ` 3 squares.

Let Ppnq be the statement:

“Any given square can be cut into m (not necessarily congruent) smaller
squares, for each m, 6 ď m ď n”.

• Let n “ 6. Given any square of side s (say). We may cut a square of side 2s
3

from one corner, leaving an L-shaped strip of width s
3
, which we can then cut

into 5 smaller squares, each of side s
3
. Hence Pp6q is true.

Let n “ 7. Given any square, we can divide the square first into four quarters;
then divide one of these smaller squares into four quarters to obtain a dissection
into 7 smaller squares. Hence Pp7q is true.

Let n “ 8. Given a square of side s (say). We may cut a square of side 3s
4

from
one corner, leaving an L-shaped strip of width s

4
, which we can then cut into 7

smaller squares, each of side s
4
. Hence Pp8q is true.

• Suppose that Ppkq is true for some k ě 8.

Then k´ 2 ě 6, so any given square can be dissected into k´ 2 smaller squares
(by Ppkq). Taking this dissection and dividing one of the smaller squares into
four quarters gives a dissection of the initial square into k´2`3 squares. Hence
Ppk ` 1q is true.

Hence Ppnq is true for all n ě 6.
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259. Let Ppnq be the statement:

“Any tree with n vertices has exactly n´ 1 edges”.

• A tree with 1 vertex is simply a vertex with 0 edges (since any edge would have
to be a loop, and would then create a cycle). Hence Pp1q is true.

• Suppose that Ppkq is true for some k ě 1.

Consider an arbitrary tree T with k ` 1 vertices.

[Idea: We need to find some way of reducing T to a tree T 1 with k vertices. This
suggests “removing an end vertex”. So we must first prove that “any tree T has
an end vertex”.]

Definition The number of edges incident with a given vertex v is called the
valency of v.

Lemma Let S be a finite tree with s ą 1 vertices. Then S has a vertex of valency
1 – that is an “end vertex”.

Proof Choose any vertex v0. Then v0 must be connected to the rest of the tree,
so v0 has valency at least 1.

If v0 is an “end vertex”, then stop; if not, then choose a vertex v1 which is adjacent
to v0.

If v1 is an “end vertex”, then stop; if not, choose a vertex v2 ‰ v0 which is adjacent
to v1.

If v2 is an “end vertex”, then stop; if not, choose a vertex v3 ‰ v1 which is adjacent
to v2.

Continue in this way.

All of the vertices v0, v1, v2, v3, . . . must be different (since any repeat vm “ vn
with m ă n would define a cycle

vm, vm`1, vm`2, . . . , vn´1, vn “ vm

in the tree S). Since we know that the tree is finite (having precisely s vertices),
the process must terminate at some stage. The final vertex ve is then an “end
vertex”, of valency 1. QED

If we apply the Lemma to our arbitrary tree T with k ` 1 vertices, we can choose
an “end vertex” v and remove both it and the edge e incident with it to obtain
a tree T 1 having k vertices. By Ppkq we know that T 1 has exactly k ´ 1 edges,
so when we reinstate the edge e, we see that T has exactly pk ´ 1q ` 1 edges, so
Ppk ` 1q is true.

Hence Ppnq is true for all n ě 1.

260.

Note: All the polyhedra described in this solution are “spherical” by virtue of
having their vertices located on the unit sphere.
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(a)(i) A regular tetrahedron.

(ii) A square based pyramid with its apex at the North pole.

(b) If a spherical polyhedron has V vertices, E edges, and F faces, then

V ´ E ` F “ 2.

Now each edge has exactly two end vertices, so 2E counts the exact number of
ordered pairs pv, eq, where e is an edge, and v is a vertex “incident with e”.

On the other hand, in a spherical polyhedron, each vertex v has valency at least
3; so each vertex v occurs in at least 3 pairs pv, eq of this kind. Hence 2E ě 3V .

In the same way, each edge e lies on the boundary of exactly 2 faces, so 2E
counts the exact number of ordered pairs pf, eq, where e is an edge of the face
f .

On the other hand, in a spherical polyhedron, each face f has at least 3 edges;
so each face f occurs in at least 3 pairs pf, eq of this kind. Hence 2E ě 3F .

If E “ 7, then 14 ě 3V , and 14 ě 3F ; now V and F are integers, so V ď 4 and
F ď 4. Hence V ` F ď 8. However V ` F “ E ` 2 “ 9. This contradiction
shows that no such polyhedron exists. QED

(c) We show by induction how to construct certain “spherical” polyhedra, with at
most one non-triangular face. Let Ppnq be the statement:

“There exists a spherical polyhedron with at most one non-triangular
face, and with e edges for each e, 8 ď e ď n”.

‚ We know that there exists a such a spherical polyhedron with n “ 6 edges
– namely the regular tetrahedron (with four faces, which are all equilateral
triangles).

We know there is no such polyhedron with n “ 7 edges (by part (b)).

When n “ 8, there is no spherical polyhedron with n “ 8 edges and all faces
triangular (since we would then have 16 “ 2E “ 3F , as in part (b)). However,
there exists a spherical polyhedron with n “ 8 edges and just one non-triangular
face – namely the square based pyramid with its apex at the North pole.

When n “ 9, we can join three points on the equator to the North and South
poles to produce a triangular bi-pyramid (the dual of a triangular prism), with
all faces triangular, and with n “ 9 edges.

When n “ 10, there is no spherical polyhedron with n “ 10 edges and with all
faces triangles (since we would then have to have 20 “ 2E “ 3F , as in part
(b)); but there exists a spherical polyhedron with n “ 10 edges and just one
face which is not an equilateral triangle – namely the pentagonal based pyramid
with its apex at the North pole.

This provides us with a starting point for the inductive construction. In
particular Pp8q, Pp9q, and Pp10q are all true.

‚ Suppose that Ppkq is true for some k ě 10. The only part of the statement
Ppk ` 1q that remains to be demonstrated is the existence of a suitable
polyhedron with k ` 1 edges.
Since k ě 10, we know that k´ 2 ě 8, so (by Ppkq) there exists a polyhedron
with all its vertices on the unit sphere, with at most one non-triangular face,
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and with e “ k ´ 2 edges. Take this polyhedron and remove a triangular
face ABC. Now add a new vertex X on the sphere, internal to the spherical
triangle ABC, and add the edges XA, XB, XC and the three triangular faces
XAB, XBC, XCA, to produce a spherical polyhedron with e “ pk´2q`3 “
k`1 edges, and with at most one non-triangular face. Hence Ppk`1q is true.

Hence Ppnq is true for all n ě 8.

261. To prove a result that is given in the form of an “if and only if” statement,
we have to prove two things: “if”, and “only if”.

We begin by proving the “only if” part:

“a map can be properly coloured with two colours only if every vertex
has even valency”.

Let M be a map that can be properly coloured with two colours. Let v be any
vertex of the map M .

The edges e1, e2, e3, . . . incident with v form parts of the boundaries of the sequence
of regions around the vertex v (with e1, e2 bordering one region; e2, e3 bordering
the next; and so on). Since we are assuming that the regions of the map M can be
“properly coloured” with two colours, the succession of regions around the vertex
v can be properly coloured with just two colours. Hence the colours of the regions
around the vertex v must alternate (say black-white-black- . . . ). And since the
map is finite, this sequence must return to the start – so the number of such
regions at the vertex v (and hence the number of edges incident with v – that is,
the valency of v) must be even.

We now prove the “if” part:

“a map can be properly coloured with two colours if every vertex has
even valency”.

Suppose that we have a map M in which each vertex has even valency. We must
prove that any such map M can be properly coloured using just two colours.

Let Ppnq be the statement:

“any map with m edges, in which each vertex has even valency, can be
properly coloured with two colours whenever m satisfies 1 ď m ď n,”.

• If n “ 1, a map in which every vertex has even valency, and which has just one
edge e, must consist of a single vertex v, with e as a loop from v to v (so v
has valency 2, since the edge e is incident with v twice). This creates a map
with two regions – the “island” inside the loop, and the “sea” outside; so we can
colour the “island” black and the “sea” white. Hence Pp1q is true.

• Suppose that Ppkq is true for some k ě 1.

Most of the contents of the statement Ppk` 1q are already guaranteed by Ppkq.
To prove that Ppk ` 1q is true, all that remains to be proved is that

any map with exactly k`1 edges, in which every vertex has even valency,
can be properly coloured using just two colours.
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Consider an arbitrary map M with k ` 1 edges, in which each vertex has even
valency.

[Idea: We need to find some way of reducing the map M to a map M 1 with ď k
edges, in which every vertex still has even valency.]

Since k ě 1, the map M has at least 2 edges. Choose any edge e of M , with
(say) vertices u1, u2 as its endpoints, and with regions R, S on either side of e.

Suppose first that u1 “ u2, so the boundary of the region R (say) consists only
of the edge e. Hence e is a loop, and S is the only region neighbouring R. The
edge e contributes 2 to the valency of u1; so if we delete the edge e, we obtain
a map M 1 in which every vertex again has even valency, in which the regions R
and S have been amalgamated into a region S1. Since M 1 has just k edges, M 1

can be properly coloured with just two colours. If we now reinstate the edge e
and the region R, we can give S the same colour as S1 (in the proper colouring
of M 1) and give R the opposite colour to S1 to obtain a proper colouring of the
map M with just two colours.

Hence we may assume that u1 ‰ u2, so that e is not the complete boundary
of R. We may then slowly shrink the edge e to a point – eventually fusing the
old vertices u1, u2 together to form a new vertex u1, where two new regions
R1, S1 meet. The result is then a new map M 1, in which all other vertices are
unchanged (and so have even valency), and in which

valencypu1q “ pvalencypu1q ´ 1q ` pvalencypu2q ´ 1q

which is also even.

Hence every vertex of the new map M 1 has even valency. Moreover, M 1 has at
most k edges, so (by Ppkq) we know that the map M 1 can be properly coloured
with just two colours. And in this colouring of M 1, there are an odd number of
colour changes as one goes from R1 to S1 through the other regions that meet
around the old vertex u1 of M , so S1 receives the opposite colour to R1. The
guaranteed proper two-colouring of M 1 therefore extends back to give a proper
two-colouring of the original map M . Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 1.

262. Let Ppnq be the statement:

“The 2n sequences of length n consisting of 0s and 1s can be arranged
in a cyclic list such that any two neighbouring sequences (including the
last and the first) differ in exactly one coordinate position.”

• When n “ 2, the required cycle is obvious:

00 Ñ 10 Ñ 11 Ñ 01 pÑ 00q.

So Pp2q is true.

• The general construction is perhaps best illustrated by first showing how Pp2q
leads to Pp3q.

The above cycle for sequences of length 2 gives rise to two disjoint cycles for
sequences of length 3:
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– first by adding a third coordinate “0”:

000 Ñ 100 Ñ 110 Ñ 010 pÑ 000q

– then by adding a third coordinate “1”:

001 Ñ 101 Ñ 111 Ñ 011 pÑ 001q.

Now eliminate the final join in each cycle (010 Ñ 000 and 011 Ñ 001) and
instead link the two cycles together by first reversing the order of the first cycle,
and then inserting the joins 000 Ñ 001 and 011 Ñ 010 to form a single cycle.

In general, suppose that Ppkq is true for some k ě 1. Then we construct a single
cycle for the 2k`1 sequences of length k ` 1 as follows:

Take the cycle of the 2k sequences of length k guaranteed by Ppkq, and
form two disjoint cycles of length 2k

• first by adding a final coordinate “0“

• then by adding a final coordinate “1”.

Then link the two cycles into a single cycle of length 2k`1, by eliminating
the final step

v1v2 ¨ ¨ ¨ vk0 Ñ 00 ¨ ¨ ¨ 00

in the first cycle, and

v1v2 ¨ ¨ ¨ vk1 Ñ 00 ¨ ¨ ¨ 01

in the second cycle, reversing the first cycle, and inserting the joins

00 ¨ ¨ ¨ 00 Ñ 00 ¨ ¨ ¨ 01 and v1v2 ¨ ¨ ¨ vk1 Ñ v1v2 ¨ ¨ ¨ vk0

to produce a single cycle of the required kind joining all 2k`1 sequences
of length k ` 1. Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 2.

Note: The significance of what we call Gray codes was highlighted in a 1953 patent
by the engineer Frank Gray (1887–1969) – where they were called reflected binary
codes (since the crucial step in their construction above involves taking two copies
of the previous cycles, reversing one of the cycles, and then producing half of
the required cycle by traversing the first copy before returning backwards along
the second copy). Their most basic use is to re-encode the usual binary counting
sequence

1 Ñ 10 Ñ 11 Ñ 100 Ñ 101 Ñ 110 Ñ 111 Ñ 1000 Ñ 1001 Ñ 1010 Ñ ¨ ¨ ¨ ,

where a single step can lead to the need to change arbitrarily many binary
digits (e.g. the step from 3 “ “11” to 4 “ “100” changes 3 digits, and the step
from 7 “ “111” to 8 ““1000” changes 4 digits, etc.) – a requirement that is
inefficient in terms of electronic “switching”, and which increases the probability
of errors. In contrast, the Gray code sequence changes a single binary digit
at each step. However, the physical energy which is saved through reducing
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the amount of “switching” in the circuitry corresponds to an increase in the
need for unfamiliar mathematical formulae, which re-interpret each vector in the
Gray code as the ordinary integer in the counting sequence to which it corresponds.

263.

(a) The whole construction is inductive (each label derives from an earlier label).
So let Ppnq be the statement:

“if HCF pr, sq “ 1 and 2 ď r`s ď n, then the positive rational r
s

occurs
once and only once as a label, and it occurs in its lowest terms”.

‚ By construction the root is given the label 1
1
, so 1

1
occurs. And it cannot

occur again, since the numerator and denominator of each parent vertex are
both positive, neither i nor j can ever be 0. Hence Pp2q is true.

Notice that the basic construction:

“if i
j

is a ‘parent’ vertex, then we label its ‘left descendant’ as i
i`j

, and

its ‘right descendant’ i`j
j

”

guarantees that, since we start by labelling the root with the positive rational
1
1
, all subsequent ‘descendants’ are positive.

Moreover, if any ‘descendant’ were suddenly to appear not “in lowest terms”,
then either

– HCF pi, i`jq ą 1, in which case HCF pi, i`jq “ HCF pi, jq, so HCF pi, jq ą 1
at the previous stage; or

– HCF pi`j, jq ą 1, in which case HCF pi`j, jq “ HCF pi, jq, so HCF pi, jq ą 1
at the previous stage.

Since we begin by labelling the root 1
1
, where HCF p1, 1q “ 1, it follows that all

subsequent labels are positive rationals in lowest terms.

‚ Suppose that Ppkq is true from some k ě 2.
Most parts of the statement Ppk ` 1q are guaranteed by Ppkq. To show
that Ppk ` 1q is true, it remains to consider cases where HCF pr, sq “ 1 and
r ` s “ k ` 1 (ě 3). Either (i) r ą s, or (ii) s ą r.

(i) Suppose that r ą s. Then r
s

arises in this (fully cancelled) form only as a
direct (right) descendant of r´s

s
. So r

s
occurs. Moreover, every label occurs

in its lowest terms, so r
s

cannot occur again.

(ii) Suppose that s ą r. Then r
s

arises in this (fully cancelled) form only as a
direct (left) descendant of r

s´r
. So r

s
occurs. Moreover, every label occurs in

its lowest terms, so r
s

cannot occur again.
Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 2.

(b) The fact that the labels are left-right symmetric is also an inductive phenomenon.
We note that the one fully “left-right symmetric” label, namely 1

1
, occurs in the

only fully “left-right symmetric” position – namely at the root.
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All other labels occur in reciprocal pairs: r
s

and s
r
, where we may assume that

r ą s. The fact that these occur as labels of “left-right symmetric” vertices
derives from the fact that
r
s

is the ‘right descendant’ of r´s
s

and
s
r

is the ‘left descendant’ of s
r´s

.

So if we know that the earlier reciprocal pair reciprocal pair r´s
s

and s
r´s

occur
as labels of symmetrically positioned vertices, then it follows that the same is
true of the descendant reciprocal pair r

s
and s

r
. We leave the reader to write out

the proof by induction – for example, using the statement

“Ppnq: if r, s ą 0, and 2 ď r ` s ď n, then the reciprocal pair r
s
, s
r

occur as labels of vertices at the same level below the root, with the two
labelled vertices being mirror images of each other about the vertical
mirror through the root vertex.”

264. The intervals in this problem may be of any kind (including finite or infinite).
Each interval has two “endpoints”, which are either ordinary real numbers, or ˘8
(signifying that the interval goes off to infinity in one or both directions).

Let Ppnq be the statement:

“if a collection of n intervals on the x-axis has the property that any two
intervals overlap in an interval (of possibly zero length – i.e. a point),
then the intersection of all intervals in the collection is a non-empty
interval”.

When n “ 2, the hypothesis of Pp2q is the same as the conclusion. So Pp2q is true.

Suppose that Ppkq is true for some k ě 2. We seek to prove that Ppk` 1q is true.

So consider a collection of k` 1 intervals with the property that any two intervals
in the collection intersect in a non-empty interval. If this collection includes one
interval that is listed more than once, then the required conclusion follows from
Ppkq. So we may assume that the intervals in our collection are all different.

Among the k`1 intervals, consider first those with the largest right hand endpoint.
If there is only one such interval, denote it by I0; if there is more than one interval
with the same largest right hand endpoint, let I0 be the interval among those with
the largest right hand endpoint that has the largest left hand endpoint. In either
case, put I0 aside for the moment, leaving a collection S of k intervals with the
required property.

By Ppkq we know that the intervals in the collection S intersect in a non-empty
interval I, with left hand endpoint a and right hand endpoint b (say).

We have to show that the intersection I X I0 is non-empty.

The proof that follows works if the endpoint b is included in the interval I. The
slight adjustment needed if b is not included in the interval I is left to the reader.

Since the right hand endpoint of I0 is the largest possible, and since points between
a and b belong to all the intervals of S, we can be sure that the right hand endpoint
of I0 is ě b.
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Moreover, for each point x ą b, we know that there must be some interval Ix in the
collection S which does not stretch as far to the right as x. Since, by hypothesis,
the intersection I0X Ix is non-empty, the left hand endpoint of I0 lies to the left of
every such point x, so I0 must overlap the interval I, whence it follows that I X I0
is a non-empty interval as required.

Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 2.

265. If one experiments a little, it should become clear

• that if tank T2 contains more than tank T1, then linking tank T to T2 leads to
a better immediate outcome (i.e. a larger amount in tank T ) than linking T to
T1;

• that if, at some stage in the linking sequence, tank T contains an interim amount
of a litres, and is about to link successively to a tank containing b litres, and then
to the tank containing c litres, this ordered pair of changes alters the amount
in the tank T to a`b`2c

4
litres; so for a better final outcome we should always

choose the sequence so that b ă c;

• once the tap linking tank T to another tank has been opened, so that the two
levels become equal, there is no benefit from opening the tap linking these two
tanks ever again, so tank T should be linked with each other tank at most once.

These three observations essentially determine the answer – namely that tank T
should be joined to the other tanks in increasing order of their initial contents.

For a proof by induction, let Ppnq be the statement:

“given n tanks containing a1, a2, a3, . . . , an litres respectively, where

a1 ă a2 ă a3 ă ¨ ¨ ¨ ă an,

if T is the tank containing the smallest amount a1 litres, then the optimal
sequence for linking the other n ´ 1 tanks to tank T (optimal in the
sense that it transfers the maximum amount of water to tank T ) is the
sequence that links T successively to the other tanks in increasing order
of their initial contents”.

• When n “ 2, there is only one possible sequence, which is the one described, so
Pp2q is true.

• Suppose that Ppkq is true for some k ě 2, and consider an unknown collection
of k ` 1 tanks containing a1, a2, a3, . . . , ak`1 litres respectively, where

a1 ă a2 ă a3 ă ¨ ¨ ¨ ă ak`1,

and where T is the tank which initially contains a1 litres.

Suppose that in the optimal sequence of k successive joins to the other k tanks (that
is, that transfers the largest possible amount of water to tank T ), the succession
of joins is to join T first to tank T2, then to tank T3, and so on up to tank Tk`1

(where tank Tm is not necessarily the tank containing am litres). There are now
two possibilities: either
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(i) Tk`1 is the tank containing ak`1 litres, or

(ii) Tk`1 contains less than ak`1 litres.

(i) Suppose tank Tk`1 is the tank containing ak`1 litres. Then the first k´ 1 joins
involve the k tanks containing a1, a2, a3, . . . , ak litres. And we know (by the very
first bullet point above) that, in order to maximize the final amount in tank T ,
the amount in tank T after linking it to tank Tk must be “as large as it could
possibly be”. Hence, by Ppkq, the first k ´ 1 joins link T successively to the
other tanks in increasing order of their contents – before finally linking to the
tank containing ak`1 litres. Hence the conclusion of Ppk ` 1q holds.

(ii) Now suppose that tank Tk`1 contains am ă ak`1 litres.

By the very first bullet point, in order to guarantee the optimal overall outcome
of the final linking with tank Tk`1 the amount in tank T after it has been linked
to tank Tk must be “as large as it can possibly be” (given the amounts in the
tanks T, T2, T3, . . . , Tk). Hence statement Ppkq applies to the initial sequence of
k ´ 1 joins (of T to T2, then to T3, and so on up to Tk), and guarantees that
these tanks must be in increasing order of their initial contents. In particular,
the last tank in this sequence, Tk, must be the one containing ak`1 litres. But
if we denote by a litres the amount in tank T just before it links with tank Tk
(containing ak`1 litres), then the last two linkings, with b “ ak`1 and c “ am
contradict the second bullet point at the start of this solution. Hence case (ii)
cannot occur.

Hence Ppk ` 1q is true.

Hence Ppnq is true for all n ě 2.

266.

Note: Like all practical problems, this one requires an element of initial
“modelling” in order to make the situation amenable to mathematical analysis.

‘Residue’ clings to surfaces; so the total amount of ‘residue’ will depend on

(a) the viscosity of the chemical (how ‘thick’, or ‘sticky’ it is), and

(b) the total surface area of the inside of the flask.

Since we are given no information about quantities, we may fix the amount of
residue remaining in the ‘empty’ flask at “1 unit”, and the amount of solvent in
the other flask as “s units”.

If we add the solvent, we get a combined amount of 1` s units of solution – which
we may assume (after suitable shaking) to be homogeneous, with the chemical
concentration reduced to “1 part in 1` s”.

The first modelling challenge arises when we try to make mathematical sense of
what remains at each stage after we empty the flask. The internal surface area
of the flask, to which any diluted residue may adhere, is fixed. If we make the
mistake of thinking of the original chemical as “thick and sticky” and the solvent
as “thin”, then the viscosity of the diluted residue will change relative to the
original, and will do so in ways that we cannot possibly know. Hence the only
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reasonable assumption (which may or may not be valid in a particular instance)
is to assume that the viscosity of the original chemical is roughly the same as the
viscosity of the chemical-solvent mixture. This then suggests that, on emptying the
diluted mixture, roughly the same amount (1 unit) of diluted mixture will remain
adhering to the walls of the flask. So we will be left with 1 unit of residue, with a
concentration of 1

1`s
. In particular, if s “ 1, using all the solvent at once reduces

the amount of toxic chemical residue to 1
2

unit (with the other 1
2

unit consisting
of solvent).

But what if we use only half of the solvent first, empty the flask, and then use the
other half? Adding s

2
units of solvent (and shaking thoroughly) produces 1 ` s

2

units of homogeneous mixture, with a concentration of 1 part per 1` s
2
. When we

empty the flask, we expect roughly 1 unit of residue with this concentration – so
just 2

2`s
units of the chemical, with s

2`s
units of solvent.

If we then add the other s
2

units of solvent, this produces 1 ` s
2

units of mixture

with a concentration of 1 part per
`

1` s
2

˘2
. When we empty the flask, we expect

roughly 1 unit of residue with concentration 1 part per
`

1` s
2

˘2
. In particular, if

s “ 1, this strategy reduces the amount of toxic chemical in the 1 unit of residue
to 4

9
units. Since 4

9
ă 1

2
this two-stage strategy seems more effective than the

previous “all at once” strategy.

Suppose that we use a four-stage strategy – using first one quarter of the solvent,
then another quarter, and so on. We then land up with roughly 1 unit of residue
with concentration 1 part per

`

1` s
4

˘4
. In particular, if s “ 1, we land up with the

amount of toxic chemical in the 1 unit of residue equal to 256
625

units, and 256
625

ă 4
9
.

More generally, if we use
`

1
n

˘

th of the solvent, n times, the final amount of toxic

chemical in the 1 unit of residue is equal to
`

1` s
n

˘´n
. And as n gets larger and

larger, this expression gets closer and closer to e´s. In particular, when s “ 1, this
strategy leaves a final amount of chemical in the 1 unit of residue approximately
equal to 1

e
“ 0.367879 ¨ ¨ ¨ .

Note: The situation here is similar to that faced by a washing machine designer,
who wishes to remove traces of detergent from items that have been washed,
without using unlimited amounts of water. The idea of having a “fixed amount of
solvent” corresponds to the goal of “water efficient” rinsing. However, the washing
machine cycle, or programme, clearly cannot repeat the rinsing indefinitely (as
would be required in the limiting case above).

267.

(i) If
?

2 “ m
n

, then

2n2
“ m2 (˚)

Hence m2 is even.

It follows that m must be even.

Note: It is a fact that, if m “ 2k is even, then m2
“ 4k2 is also even. But this

is completely irrelevant here. In order to conclude that “m must be even”,
we have to prove:
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Claim m cannot be odd.
Proof Suppose m is odd.
6 m “ 2k ` 1 for some integer k.
But then

m2
“ p2k ` 1q2 “ 4k2 ` 4k ` 1

would be odd, contrary to “m2 must be even”.
Hence m cannot be odd. QED

(ii) Since m is even, we may write m “ 2m1 for some integer m1.

Equation (˚) in (i) above then becomes n2
“ 2pm1q2, so n2 is even. Hence, as in

the Note above, n must be even, so we can write n “ 2n1 for some integer n1.

(iii) If
?

2 “ m
n

, then m “ 2m1, and n “ 2n1 are both even.

6
?

2 “ m
n
“ 2m1

2n1
“ m1

n1
.

In the same way, it follows that m1 and n1 are both even, so we may write
m1 “ 2m2, n1 “ 2n2 for some integers m2, n2.

Continuing in this way then produces an endless decreasing sequence of positive
denominators

n ą n1 ą n2 ą ¨ ¨ ¨ ą 0.

contrary to the fact that such a sequence can have length at most n ´ 1 (or in
fact, at most 1` log2 n).

268.

(i) If a ă b and c ą 0, then ac ă bc.

If 0 ă
?

2 ď 1, then (multiplying by
?

2) it follows that 2 ď
?

2 ď 1, which is
false. Hence

?
2 ą 1.

We now know that 1 ă
?

2, so multiplying by
?

2 gives
?

2 ă 2. Hence 1 ă?
2 ă 2. In particular,

?
2 cannot be written as a fraction with denominator 1,

so Pp1q is true.

(ii) Suppose Ppkq is true for some k ě 1. Most of the statement Ppk` 1q is implied
by Ppkq: all that remains to be proved is that

?
2 cannot be written as a fraction

with denominator n “ k ` 1.

Suppose
?

2 “ m
n

, where n “ k ` 1 and m are positive integers.

Then m “ 2m1 and n “ 2n1 are both even (as in Problem 267).

So
?

2 “ m1

n1
with n1 ď k, contrary to Ppkq. Hence Ppk ` 1q holds.

6 Ppnq is true for all n ě 1.

269.

(a) Suppose that S is not empty. Then by the Least Element Principle the set S
must contain a least element k: that is, a smallest integer k which is not in the
set T . Then k ‰ 1 (since we are told that T contains the integer 1). Hence
k ą 1.
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Therefore k ´ 1 is a positive integer which is smaller than k. So k ´ 1 is not an
element of S, and hence must be an element of T . But if k´1 is an element of T ,
then we are told that pk´1q`1 must also be a member of T . This contradiction
shows that S must be empty, so T contains all positive integers.

(b) Suppose that T does not have a smallest element. Clearly 1 does not belong
to the set T (or it would be the smallest element of T ). Hence 1 must be an
element of the set S.

Now suppose that, for some k ě 1, all positive integers 1, 2, 3, . . . , k are elements
of S, but k ` 1 is not an element of S. Then k ` 1 would be an element of T ,
and would be the smallest element of T , which is not possible. Hence S has the
property that

“whenever k ě 1 is an element of S, we can be sure that k` 1 is also an
element of S.”

The Principle of Mathematical Induction then guarantees that these two
observations (that 1 is an element of S, and that whenever k is an element
of S, so is k ` 1) imply that S contains all the positive integers, so that the set
T must be empty – contrary to assumption.

Hence T must have a smallest element.

270.

(i) Triangle OP 1Q1 is a right angled triangle with =P 1OQ1 “ 45˝. Hence the two
base angles (at O and at Q1 ) are equal, so the triangle is isosceles: P 1Q1 “ P 1O.

(ii) Triangles QQ1P 1 and QQ1R are congruent by RHS (since they share the
hypotenuse QQ1, and have equal sides (QP 1 “ QP “ QR). Hence Q1P 1 “ Q1R.

(iii) If OQ : OP “ m : n, we may choose a unit so that OQ has length m units and
OP has length n units. Then

OP 1 “ OQ´QP 1 “ OQ´QP “ m´ n,

and
OQ1 “ OR´Q1R “ OR´Q1P 1 “ OR´OP 1 “ n´ pm´ nq.

(iv) OP ă OQ ă OP ` PQ, so n ă m ă n ` n. Hence 0 ă m ´ n ă n, and
0 ă 2n´m.

(v) In the square OP 1Q1R1, the ratio “diagonal : side” “ OQ1 : OP 1 “
?

2 : 1.

If the ratio OQ : OP “ m : n, with m, n positive integers, then the construction
here replaces the positive integers m, n by smaller positive integers 2n´m and
m´n, with m´n ă n. And the process can be repeated indefinitely to generate
an endless sequence of decreasing positive integers

n ą m´ n ą p2n´mq ´ pm´ nq “ 3n´ 2m ą ¨ ¨ ¨ ą 0.

Zarathustra’s last, most vital lesson:
“Now do without me.”

George Steiner (1929– )
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Lagrange, Joseph-Louis (1736–1813), 20
law

associative, 60, 82
commutative, 60, 82
distributive, 60, 82
index laws for powers, 2

LCM, 5
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Sieve of Eratosthenes, 31
similarity, 171, 174

AAA-similarity, 191, 192, 242–245
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SSS-similarity, 191

simplifying, 91, 92
singularity, ix, 109
speed, 94, 96
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constant, 101, 110
negative, 101
relative, 108
varying, 104

sphere, 24
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structure, 2, 31, 35, 51, 57, 60, 73, 92,
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Swetz, Frank, 14
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Tartaglia, Niccolò (1499–1557), 132
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tetrahedron, 48, 210, 220, 263
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261–263
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Theorem

de Moivre’s, 130
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Midpoint, 113, 189, 190, 192
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273
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on a sphere, 25
orthic, 188, 189, 240, 241
regular, 16
right angled, 14, 17, 23, 39, 40, 43,

48, 135, 136, 148, 186, 192,
210, 217–220, 239, 247, 254,
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